Algorithmic Graph Theory


Book Description

An introduction to pure and applied graph theory with an emphasis on algorithms and their complexity.




Algorithmic Graph Theory and Perfect Graphs


Book Description

Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists.




Topics in Algorithmic Graph Theory


Book Description

Algorithmic graph theory has been expanding at an extremely rapid rate since the middle of the twentieth century, in parallel with the growth of computer science and the accompanying utilization of computers, where efficient algorithms have been a prime goal. This book presents material on developments on graph algorithms and related concepts that will be of value to both mathematicians and computer scientists, at a level suitable for graduate students, researchers and instructors. The fifteen expository chapters, written by acknowledged international experts on their subjects, focus on the application of algorithms to solve particular problems. All chapters were carefully edited to enhance readability and standardize the chapter structure as well as the terminology and notation. The editors provide basic background material in graph theory, and a chapter written by the book's Academic Consultant, Martin Charles Golumbic (University of Haifa, Israel), provides background material on algorithms as connected with graph theory.




Algorithmic Graph Theory


Book Description




Applied and Algorithmic Graph Theory


Book Description

Designed as a bridge to cross the gap between mathematics and computer science, and planned as the mathematics base for computer science students, this maths text is designed to help the student develop an understanding of the concept of an efficient algorithm.




Graph Theory with Applications


Book Description




Graphs, Algorithms, and Optimization


Book Description

Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.




Graphs, Algorithms, and Optimization, Second Edition


Book Description

The second edition of this popular book presents the theory of graphs from an algorithmic viewpoint. The authors present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory. The ideas of surface topology are presented from an intuitive point of view. We have also included a discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students in computer science or mathematics programs. ?




Algorithmic Aspects of Graph Connectivity


Book Description

Algorithmic Aspects of Graph Connectivity is the first comprehensive book on this central notion in graph and network theory, emphasizing its algorithmic aspects. Because of its wide applications in the fields of communication, transportation, and production, graph connectivity has made tremendous algorithmic progress under the influence of the theory of complexity and algorithms in modern computer science. The book contains various definitions of connectivity, including edge-connectivity and vertex-connectivity, and their ramifications, as well as related topics such as flows and cuts. The authors comprehensively discuss new concepts and algorithms that allow for quicker and more efficient computing, such as maximum adjacency ordering of vertices. Covering both basic definitions and advanced topics, this book can be used as a textbook in graduate courses in mathematical sciences, such as discrete mathematics, combinatorics, and operations research, and as a reference book for specialists in discrete mathematics and its applications.




Handbook of Graph Theory, Combinatorial Optimization, and Algorithms


Book Description

The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and c