Processing and Analysis of Hyperspectral Data


Book Description

Hyperspectral imagery has received considerable attention in the last decade as it provides rich spectral information and allows the analysis of objects that are unidentifiable by traditional imaging techniques. It has a wide range of applications, including remote sensing, industry sorting, food analysis, biomedical imaging, etc. However, in contrast to RGB images from which information can be intuitively extracted, hyperspectral data is only useful with proper processing and analysis. This book covers theoretical advances of hyperspectral image processing and applications of hyperspectral processing, including unmixing, classification, super-resolution, and quality estimation with classical and deep learning methods.




Hyperspectral Data Processing


Book Description

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.




Hyperspectral Data Exploitation


Book Description

Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of application-based projects and case studies, this professional reference will bring you up-to-date on this pervasive technology, wether you are working in the military and defense fields, or in remote sensing technology, geoscience, or agriculture.




Spectral Sensing Research for Water Monitoring Applications and Frontier Science and Technology for Chemical, Biological and Radiological Defense


Book Description

This book provides unique perspectives on both state-of-the-art hyperspectral techniques for the early-warning monitoring of water supplies against chemical, biological and radiological (CBR) contamination effects as well as the emerging spectroscopic science and technology base that will be used to support an array of CBR defense and security applications in the future. The technical content in this book lends itself to the non-traditional requirements for point and stand-off detection that have evolved out of the US joint services programs over many years. In particular, the scientific and technological work presented seeks to enable hyperspectral-based sensing and monitoring that is real-time; in-line; low in cost and labor; and easy to support, maintain and use in military- and security-relevant scenarios.




Data Mining for Geoinformatics


Book Description

The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference.




Recent Remote Sensing Sensor Applications


Book Description

This book provides a comprehensive overview of remote sensing and its various applications. In remote sensing applications, various sensors that begin as both active and passive sensors are used. Active remote sensing transmits electromagnetic radiation that is both emitted and reflected, in contrast to passive remote sensing, which merely measures electromagnetic radiation that is reflected from the target. This book includes nine chapters that examine remote sensing for detecting ice, tracking and monitoring deforestation, identifying crop regions infected with disease, mineral and geological mapping, and much more.




Real-Time Recursive Hyperspectral Sample and Band Processing


Book Description

This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016.




Face Recognition Across the Imaging Spectrum


Book Description

This authoritative text/reference presents a comprehensive review of algorithms and techniques for face recognition (FR), with an emphasis on systems that can be reliably used in operational environments. Insights are provided by an international team of pre-eminent experts into the processing of multispectral and hyperspectral face images captured under uncontrolled environments. These discussions cover a variety of imaging sensors ranging from state-of-the-art visible and infrared imaging sensors, to RGB-D and mobile phone image sensors. A range of different biometric modalities are also examined, including face, periocular and iris. This timely volume is a mine of useful information for researchers, practitioners and students involved in image processing, computer vision, biometrics and security.