Algorithms, Fractals, and Dynamics


Book Description

In 1992 two successive symposia were held in Japan on algorithms, fractals and dynamical systems. The first one was Hayashibara Forum '92: International Symposium on New Bases for Engineering Science, Algorithms, Dynamics and Fractals held at Fujisaki Institute of Hayashibara Biochemical Laboratories, Inc. in Okayama during November 23-28 in which 49 mathematicians including 19 from abroad participated. They include both pure and applied mathematicians of diversified backgrounds and represented 11 coun tries. The organizing committee consisted of the following domestic members and Mike KEANE from Delft: Masayosi HATA, Shunji ITO, Yuji ITO, Teturo KAMAE (chairman), Hitoshi NAKADA, Satoshi TAKAHASHI, Yoichiro TAKAHASHI, Masaya YAMAGUTI The second one was held at the Research Institute for Mathematical Science at Kyoto University from November 30 to December 2 with emphasis on pure mathematical side in which more than 80 mathematicians participated. This volume is a partial record of the stimulating exchange of ideas and discussions which took place in these two symposia.




Chaos, Fractals, and Dynamics


Book Description

Introduces the mathematical topics of chaos, fractals, and dynamics using a combination of hands-on computer experimentation and precalculas mathmetics. A series of experiments produce fascinating computer graphics images of Julia sets, the Mandelbrot set, and fractals. The basic ideas of dynamics--chaos, iteration, and stability--are illustrated via computer projects.




Chaotic Dynamics and Fractals


Book Description

Chaotic Dynamics and Fractals covers the proceedings of the 1985 Conference on Chaotic Dynamics, held at the Georgia Institute of Technology. This conference deals with the research area of chaos, dynamical systems, and fractal geometry. This text is organized into three parts encompassing 16 chapters. The first part describes the nature of chaos and fractals, the geometric tool for some strange attractors, and other complicated sets of data associated with chaotic systems. This part also considers the Henon-Hiles Hamiltonian with complex time, a Henon family of maps from C2 into itself, and the idea of turbulent maps in the course of presenting results on iteration of continuous maps from the unit interval to itself. The second part discusses complex analytic dynamics and associated fractal geometry, specifically the bursts into chaos, algorithms for obtaining geometrical and combinatorial information, and the parameter space for iterated cubic polynomials. This part also examines the differentiation of Julia sets with respects to a parameter in the associated rational map, permitting the formulation of Taylor series expansion for the sets. The third part highlights the applications of chaotic dynamics and fractals. This book will prove useful to mathematicians, physicists, and other scientists working in, or introducing themselves to, the field.




Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (5th Edition)


Book Description

The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 150 ready to run programs are included. New topics added to the fifth edition are Langton's ant, chaotic data communication, self-controlling feedback, differential forms and optimization, T-norms and T-conorms with applications.




The Beauty of Fractals


Book Description

Now approaching its tenth year, this hugely successful book presents an unusual attempt to publicise the field of Complex Dynamics. The text was originally conceived as a supplemented catalogue to the exhibition "Frontiers of Chaos", seen in Europe and the United States, and describes the context and meaning of these fascinating images. A total of 184 illustrations - including 88 full-colour pictures of Julia sets - are suggestive of a coffee-table book. However, the invited contributions which round off the book lend the text the required formality. Benoit Mandelbrot gives a very personal account, in his idiosyncratic self-centred style, of his discovery of the fractals named after him and Adrien Douady explains the solved and unsolved problems relating to this amusingly complex set.




Benoit Mandelbrot


Book Description

This is a collection of articles, many written by people who worked with Mandelbrot, memorializing the remarkable breadth and depth of his work in science and the arts. Contributors include mathematicians, physicists, biologists, economists, and engineers, as expected; and also artists, musicians, teachers, an historian, an architect, a filmmaker, and a comic. Some articles are quite technical, others entirely descriptive. All include stories about Benoit.Also included are chapters on fractals and music by Charles Wuorinen and by Harlan Brothers, on fractals and finance by Richard Hudson and by Christian Walter, on fractal invisibility cloaks by Nathan Cohen, and a personal reminiscence by Aliette Mandelbrot.While he is known most widely for his work in mathematics and in finance, Benoit influenced almost every field of modern intellectual activity. No other book captures the breadth of all of Benoit's accomplishments.




Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II


Book Description

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.




Fractal Patterns in Nonlinear Dynamics and Applications


Book Description

Most books on fractals focus on deterministic fractals as the impact of incorporating randomness and time is almost absent. Further, most review fractals without explaining what scaling and self-similarity means. This book introduces the idea of scaling, self-similarity, scale-invariance and their role in the dimensional analysis. For the first time, fractals emphasizing mostly on stochastic fractal, and multifractals which evolves with time instead of scale-free self-similarity, are discussed. Moreover, it looks at power laws and dynamic scaling laws in some detail and provides an overview of modern statistical tools for calculating fractal dimension and multifractal spectrum.




A Student's Guide to Maxwell's Equations


Book Description

Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.




Chaos and Fractals


Book Description

For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.