Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables
Author : Walter Philipp
Publisher :
Page : 140 pages
File Size : 24,75 MB
Release : 1975
Category :
ISBN :
Author : Walter Philipp
Publisher :
Page : 140 pages
File Size : 24,75 MB
Release : 1975
Category :
ISBN :
Author : Walter Philipp
Publisher : American Mathematical Soc.
Page : 146 pages
File Size : 36,89 MB
Release : 1975
Category : Invariance
ISBN : 0821818619
A strong revival of interest in the law of the iterated logarithm and related asymptotic fluctuation results has occurred in the last decade, stimulated by two remarkable papers by Volker Strassen. In these papers, Strassen introduces a new method for establishing such fluctuation results for sums of independent random variables and for martingales. Strassen's almost sure invariance principle for martingales states that each martingale satisfying a certain second moment condition is with probability on "close" to a Brownian motion. In this monograph we investigate the asymptotic fluctuation behavior of sums of weakly dependent random variables, such as lacunary trigonometric mixing, and Gaussian sequences.
Author : Shijian Yan
Publisher : American Mathematical Soc.
Page : 352 pages
File Size : 33,5 MB
Release : 1991
Category : Mathematics
ISBN : 0821851268
Probability theory has always been an active field of research in China, but, until recently, almost all of this research was written in Chinese. This book contains surveys by some of China's leading probabilists, with a fairly complete coverage of theoretical probability and selective coverage of applied topics. The purpose of the book is to provide an account of the most significant results in probability obtained in China in the past few decades and to promote communication between probabilists in China and those in other countries. This collection will be of interest to graduate students and researchers in mathematics and probability theory, as well as to researchers in such areas as physics, engineering, biochemistry, and information science. Among the topics covered here are: stochastic analysis, stochastic differential equations, Dirichlet forms, Brownian motion and diffusion, potential theory, geometry of manifolds, semi-martingales, jump Markov processes, interacting particle systems, entropy production of Markov processes, renewal sequences and p-functions, multi-parameter stochastic processes, stationary random fields, limit theorems, strong approximations, large deviations, stochastic control systems, and probability problems in information theory.
Author : Abdulla Azamov
Publisher : Springer
Page : 197 pages
File Size : 13,52 MB
Release : 2018-10-20
Category : Mathematics
ISBN : 3030014762
This book features papers presented during a special session on dynamical systems, mathematical physics, and partial differential equations. Research articles are devoted to broad complex systems and models such as qualitative theory of dynamical systems, theory of games, circle diffeomorphisms, piecewise smooth circle maps, nonlinear parabolic systems, quadtratic dynamical systems, billiards, and intermittent maps. Focusing on a variety of topics from dynamical properties to stochastic properties of dynamical systems, this volume includes discussion on discrete-numerical tracking, conjugation between two critical circle maps, invariance principles, and the central limit theorem. Applications to game theory and networks are also included. Graduate students and researchers interested in complex systems, differential equations, dynamical systems, functional analysis, and mathematical physics will find this book useful for their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference’s scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Algebra, Complex Analysis, and Pluripotential Theory is also published in the Springer Proceedings in Mathematics & Statistics Series.
Author : Anirban DasGupta
Publisher : Springer Science & Business Media
Page : 727 pages
File Size : 49,69 MB
Release : 2008-02-06
Category : Mathematics
ISBN : 0387759719
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Author : Christian Houdré
Publisher : Springer Science & Business Media
Page : 372 pages
File Size : 45,42 MB
Release : 2013-04-19
Category : Mathematics
ISBN : 3034804903
This is a collection of papers by participants at High Dimensional Probability VI Meeting held from October 9-14, 2011 at the Banff International Research Station in Banff, Alberta, Canada. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other areas of mathematics, statistics, and computer science. These include random matrix theory, nonparametric statistics, empirical process theory, statistical learning theory, concentration of measure phenomena, strong and weak approximations, distribution function estimation in high dimensions, combinatorial optimization, and random graph theory. The papers in this volume show that HDP theory continues to develop new tools, methods, techniques and perspectives to analyze the random phenomena. Both researchers and advanced students will find this book of great use for learning about new avenues of research.
Author : Alexander Bulinski
Publisher : World Scientific
Page : 447 pages
File Size : 32,93 MB
Release : 2007-09-05
Category : Mathematics
ISBN : 9814474576
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications.There are 434 items in the bibliography.The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.).
Author : M. H. A. Davis
Publisher : CRC Press
Page : 596 pages
File Size : 49,8 MB
Release : 1991
Category : Mathematics
ISBN : 9782881247163
A collection of 22 articles based on papers presented at a workshop held at Imperial College, London, April 1989. They concern applications of stochastic analysis--the theory of stochastic integration, martingales and Markov processes--to a variety of applied problems centered around optimization of dynamical systems under uncertainty. Topics covered include characterization and approximation for stochastic system models, problems in stochastic control theory, and various facets of nonlinear filtering theory and system identification. Annotation copyrighted by Book News, Inc., Portland, OR
Author : B. Szyszkowicz
Publisher : Elsevier
Page : 925 pages
File Size : 31,57 MB
Release : 1998-10-29
Category : Mathematics
ISBN : 008049952X
One of the aims of the conference on which this book is based, was to provide a platform for the exchange of recent findings and new ideas inspired by the so-called Hungarian construction and other approximate methodologies. This volume of 55 papers is dedicated to Miklós Csörgő a co-founder of the Hungarian construction school by the invited speakers and contributors to ICAMPS'97.This excellent treatize reflects the many developments in this field, while pointing to new directions to be explored. An unequalled contribution to research in probability and statistics.
Author : Mark Pollicott
Publisher : Springer Nature
Page : 536 pages
File Size : 42,91 MB
Release : 2021-10-01
Category : Mathematics
ISBN : 3030748634
This volume arose from a semester at CIRM-Luminy on “Thermodynamic Formalism: Applications to Probability, Geometry and Fractals” which brought together leading experts in the area to discuss topical problems and recent progress. It includes a number of surveys intended to make the field more accessible to younger mathematicians and scientists wishing to learn more about the area. Thermodynamic formalism has been a powerful tool in ergodic theory and dynamical system and its applications to other topics, particularly Riemannian geometry (especially in negative curvature), statistical properties of dynamical systems and fractal geometry. This work will be of value both to graduate students and more senior researchers interested in either learning about the main ideas and themes in thermodynamic formalism, and research themes which are at forefront of research in this area.