Calculus Volume 3


Book Description

Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.




Elementary Real Analysis


Book Description

This is the second edition of the text Elementary Real Analysis originally published by Prentice Hall (Pearson) in 2001.Chapter 1. Real NumbersChapter 2. SequencesChapter 3. Infinite sumsChapter 4. Sets of real numbersChapter 5. Continuous functionsChapter 6. More on continuous functions and setsChapter 7. Differentiation Chapter 8. The IntegralChapter 9. Sequences and series of functionsChapter 10. Power seriesChapter 11. Euclidean Space R^nChapter 12. Differentiation on R^nChapter 13. Metric Spaces




Elements of Real Analysis


Book Description

This book is an attempt to make presentation of Elements of Real Analysis more lucid. The book contains examples and exercises meant to help a proper understanding of the text. For B.A., B.Sc. and Honours (Mathematics and Physics), M.A. and M.Sc. (Mathematics) students of various Universities/ Institutions.As per UGC Model Curriculum and for I.A.S. and Various other competitive exams.




Real Analysis


Book Description

You should not be intimidated by advanced calculus. It is just another logical subject, which can be tamed by a systematic, logical approach. This textbook proves it.




Basic Real Analysis


Book Description

This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue’s differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. —Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. —Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. —CHOICE Reviews




Princeton Review AP Calculus BC Prep, 2023


Book Description

EVERYTHING YOU NEED TO HELP SCORE A PERFECT 5! Ace the AP Calculus BC Exam with this comprehensive study guide, which includes 5 full-length practice tests, content reviews, targeted strategies, and access to online extras. Techniques That Actually Work • Tried-and-true strategies to help you avoid traps and beat the test • Tips for pacing yourself and guessing logically • Essential tactics to help you work smarter, not harder Everything You Need for a High Score • Fully aligned with the latest College Board standards for AP Calculus BC • Comprehensive content review for all test topics • Engaging activities to help you critically assess your progress • Access to drills, study plans, a handy list of formulas, helpful pre-college information, and more via your online Student Tools Practice Your Way to Excellence • 5 full-length practice tests (3 in the book, 2 online) with detailed answer explanations • Practice drills at the end of each content review chapter • Handy reference guide of key calculus formulas




Invitation to Real Analysis


Book Description

Provides a careful introduction to the real numbers with an emphasis on developing proof-writing skills. The book continues with a logical development of the notions of sequences, open and closed sets (including compactness and the Cantor set), continuity, differentiation, integration, and series of numbers and functions.




Introductory Analysis


Book Description

Introductory Analysis, Second Edition, is intended for the standard course on calculus limit theories that is taken after a problem solving first course in calculus (most often by junior/senior mathematics majors). Topics studied include sequences, function limits, derivatives, integrals, series, metric spaces, and calculus in n-dimensional Euclidean space Bases most of the various limit concepts on sequential limits, which is done first Defines function limits by first developing the notion of continuity (with a sequential limit characterization) Contains a thorough development of the Riemann integral, improper integrals (including sections on the gamma function and the Laplace transform), and the Stieltjes integral Presents general metric space topology in juxtaposition with Euclidean spaces to ease the transition from the concrete setting to the abstract New to This Edition Contains new Exercises throughout Provides a simple definition of subsequence Contains more information on function limits and L'Hospital's Rule Provides clearer proofs about rational numbers and the integrals of Riemann and Stieltjes Presents an appendix lists all mathematicians named in the text Gives a glossary of symbols




Complex Analysis


Book Description

A new edition of a classic textbook on complex analysis with an emphasis on translating visual intuition to rigorous proof.