An Analysis on Vehicular Exhaust Emissions from Transit Buses Running on Biodiesel Blends


Book Description

This experimental study presents a comprehensive analysis of exhaust emission variation from the public transit buses in the city of Toledo running on alternative fuels. The pollutants from the exhaust that are monitored in this study are carbon monoxide, sulfur dioxide, oxides of nitrogen (NO, NO2, and NOX), and carbon dioxide. The performance of engine variables are also measured simultaneously with exhaust emission data. The engine variables affecting the pollutant levels in the exhaust are acceleration, engine load, engine speed, vehicle speed, fuel flow rate, coolant temperature, output torque, and boost pressure. The on-road and idle-engine variation of pollutant levels in the exhaust are studied. The pollutant level variation in the exhaust of a bus is different for different operation modes. The pollutant levels are found to decrease when the vehicle is on-road, with the increase in biodiesel concentration in the base fuel. On contrast, the pollutant levels are observed to increase with biodiesel concentration, when the bus is in idle-engine mode. Furthermore, when the bus is in motion, the pollutant levels in the exhaust are less as compared to the idle-engine mode. This observation helps to understand that vehicles in motion deliver the appropriate amount of fuel into the cylinder for a more complete combustion. Also, an engine in idle mode does not run at its optimum temperature and conditions that lead to incomplete combustion. The engine initial temperature, accessory load on the engine, and engine speed are found to affect the emission levels significantly. The engines at low temperatures are found to emit pollutants of higher levels because of the initial warm-up phase of an engine. Furthermore, with the increase in load and speed, the engine has to produce higher work requiring a higher fueling rate and thereby resulting in higher emission levels in the exhaust. During the engine start, transient emissions of the monitored pollutants are significantly higher because the air-fuel ratio cannot be maintained at stoichiometric mixture during start and stop operations. Furthermore, during the engine start-up, the heat necessary in the reaction chamber is not maintained that results in incomplete combustion. Hence, more transient emissions are emitted during the engine start-up. The parameters influencing pollutant levels for on-road and idle-engine conditions are identified, using regression analysis, for different biodiesel blends. Using regression analysis, the correlation and the amount of impact associated with the engine variables on pollutant levels are identified. The regression analysis helped to identify the parameters affecting pollutant levels and the relationships between different monitored parameters and pollutants in the exhaust. This study and analysis of exhaust emission variation of biodiesel blends will assist the operators of biodiesel fleets and regulators of air pollution in selecting the appropriate operating variables for emission control strategies in their area.







Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses


Book Description

Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of methyl esters (SME) produced more CO and less CO2 emissions than those with low degrees of unsaturation and short chain lengths (WCO and TO, respectively). In addition, biodiesel fuels with long and unsaturated chains released more CH4 than the ones with shorter and less unsaturated chains. Experimental results on soot particles showed a significant reduction in soot emissions when using biodiesel compared to ULSD. For neat biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles was greater than the average soot particle from biodiesel blends. Eight elements were detected as the marker metals in biodiesel soot particles. The conclusion suggests that selected characterization methods are valuable for studying the structure and distribution of particulates. Experiments on both PM and NOx emissions were conducted on real engines in parallel with laboratory study. Field experiments using TARTA buses were performed on buses equipped with/without post-treatment technologies. The performance of the bus that ran on blended biodiesel was found to be very similar to ULSD. As a part of this study, the toxic nature of engine exhausts under different idling conditions was studied. The results of the PM emission analysis showed that the PM mean value of emission is dependent on the engine operation conditions and fuel type. Besides, different idling modes were investigated with respect to organic carbon (OC), elemental carbon (EC), and elemental analysis of the PMs collected from public transit buses in Toledo, Ohio. In the modeling portion of this work, a simplified model was developed by using artificial neural network (ANN) to predict NOx emissions from TARTA buses via engine parameters. ANN results showed that the developed ANN model was capable of predicting the NOx emissions of the tested engines with excellent correlation coefficients, while root mean square errors (RMSEs) were in acceptable ranges. The ANN study confirmed that ANN can provide an accurate and simple approach in the analysis of complex and multivariate problems, especially for idle engine NOx emissions. Finally, in the last part of the modeling study, a biodiesel surrogate has been proposed and main pathways have been derived to present a simple model for NOx formation in biodiesel combustion via stochastic simulation algorithm (SSA). The main reaction pathways are obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND is added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The predicted results are in good agreement with a limited number of experimental data at LTC conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The SSA model shows the potential to predict NOx emission concentrations, when the peak combustion temperature increases through the addition of ULSD to biodiesel. The SSA method demonstrates the possibility of reducing the computational complexity in biodiesel emissions modeling. Based on these findings, it can be concluded that both alternative renewable fuels (biodiesel blends) as well as the LTC condition are suitable choices for existing diesel engines to improve the sustainability of fuel and to reduce environmental emissions.




Effects of Biodiesel Blended Fuels on Exhaust Emissions of Diesel Engine


Book Description

The effect of biodiesel blended fuels on exhaust emissions of diesel engines was investigated. The test fuels were 2%, 5%, 20% of rapeseed methyl ester, pure rapeseed methyl ester, 2%, 5%, 20% of palm stearin methyl ester, pure palm strearin methyl ester, 20%, 30%, 40% of used cooking oil methyl ester. Two kinds of test vehicles were Toyota D4D 2.5L and Isuzu DMAX 2.5L. The exhaust emissions analysis were carried out by running on chassis dynamometer. The results showed that the blends of 2%, 5% of palm strearin methyl ester and rapeseed methyl ester showed did not significant difference in exhaust emissions and fuel consumption compared to based diesel. In the other hand, the blends of 5% showed tendency reduction of THC and PM emissions. The blends of 20% with all kinds methyl ester, the THC, PM emissions were decreased 10-34% and 6-34% while the fuel consumption was increased 2-5%. Used cooking oil methyl ester blended with diesel in ratio 30, 40%were decreased THC, PM emissions 18-27% and 16-36%. NOX emissions and fuel consumption were increased 7%, 5-6%. Pure palm strearin methyl ester and rapeseed methyl ester provides a greater reduction of all exhaust emissions. On the contrary, NOX emission and fuel consumption were increased.




Biodiesel Properties and Characterization of Particulate Matter Emissions from TARTA Buses Fueled by B20 Biodiesel


Book Description

Physical properties (cloud point, kinematic viscosity, and flash point) of biodiesel blends of commercial biodiesel fuels were measured. Four different biodiesel blends (10, 20, 50, 100 %) based on three feedstocks (tallow oil, soybean, and waste cooking oil) were tested, and the results were compared with ultra-low-sulfur diesel (ULSD). All the tests were conducted according to the American Society for Testing and Materials (ASTM) standard methods. The test results were evaluated statistically. The tested properties showed strong dependence on blends, which means that the percentage of biodiesel in a biodiesel/ULSD mixture is an important factor that determines the biodiesel properties. It was also found that the type of feedstock is a controlling factor in the biodiesel properties. Contents of saturated fatty acids and triglycerides at higher percentages are thought to be the main determinant of the degree of the dependence, and also the cause of undesired variations in the cold flow properties, kinematic viscosity and flash point. These variations may be controlled through modifications in the transesterification process or by using additives, which is necessary for better engine performance with biodiesel blends. Particulate matter (PM) emissions from mobile sources are the major contributors of urban atmospheric particulate matter especially PM2.5. Particulate matter released from diesel engines contains various organic and inorganic compounds. It is necessary to measure the PM size distribution shape, elemental and organic carbon etc., released from vehicles in order to quantify the source contribution and understand the possible health impacts. Previous studies stated PM2.5 and PM10 to be highly toxic and roots for respiratory illnesses such as asthma and chronic bronchitis, lung inflammation and also increases cardiovascular related risk factors. Biodiesel is one of alternative fuels that are being increasingly used to reduce the release of PM emissions from mobile sources. The current literature shows that the release of PM from transit buses decreases by increasing the biodiesel blend percentage with regular diesel. In this study, the experiments were conducted on the Toledo Area Regional Transit Authority (TARTA) buses 701 and 802, which run on B20 soybean biodiesel (20 vol% biodiesel + 80 vol% ultra-low sulfur diesel). PM emissions were collected on quartz filter papers and were further analyzed for PM characterization. A new approach of measuring particulate matter has been developed based on the dynamic light scattering and electric double layer of PM particles using a NICOMP 380 ZLS Zeta potential particle size analyzer and sonication process to suspend the PM into a liquid. Regardless of the bus number, average mean diameter was more for emissions from hot idling than cold. Also, 701 has PM of larger diameter than 802 in both idling modes. Tests results were also analyzed for Elemental Carbon (EC) and Organic Carbon (OC). Elemental carbon was formed from fuel rich engine locations at high combustion temperatures, whereas organic carbon was formed from primary fuel combustion and atmospheric chemical reactions at low vapor pressure. EC concentration has reduced to nearly 10% of TC from 701 to 802 during idle modes, whereas in the same situation OC concentration has increase to 89%. Hot idling has been the main source for EC emissions, and to control EC and PM emissions hot idling must be avoided. From all these finding in this study biodiesel fuel with NOx emission controlling equipment's are better than the conventional diesel fuels and are suitable for the diesel engines. This will help in improving the sustainability of the fuel and also moderate the emissions.




An Analysis of NOx and PM Emissions in Idling and Moving Conditions of Buses with EGR and Non-EGR Engines Running on Biodiesel


Book Description

Biodiesel is an alternate to diesel for transit buses due to its environmental benefits. However, NOx and particulate matter emissions may be an issue in the use of biodiesel. The major objective of this experimental thesis was to study tail pipe emissions from transit buses during daily routine operations. This thesis focuses on the trends of NOx and particulate matter emissions collected from buses with EGR and NON-EGR engines during their total run times. To further categorize and elaborate our findings, the run time was divided into both idling and running conditions. In order to achieve comprehensive results, the idling and running conditions were further segregated into two different cases, i.e., cold idling and hot idling conditions. The running conditions were divided into acceleration, deceleration, motion in variable speeds and partial idle modes. The NOx emission values were collected and analyzed for all the conditions and modes described above. The particulate matter emissions were collected and analyzed in idle conditions. It was learned that hotter engines produced lower emissions when compared to cold engine conditions. The experiments and analysis of NOx emissions concluded that maximum emissions were found in the acceleration condition. A Mexa-720 Horiba NOx analyzer was used to measure NOx emissions and Cummins in-site 6 equipment and software program were used for engine data collection during the field study. The experiments were carried out on both transit buses with EGR and NON-EGR engines. The particulate matter emissions collection was carried out with quartz filter papers and a CATCH CAN instrument. An EDS X-Max 50mm2 / FEI Quanta 3D FEG Dual Beam Electron Microscope was used for the EDS analysis of PM emissions and the ICP-MS was carried out using Xseries 2. The transit buses are used by Toledo Area Regional Transit Authority (TARTA). Both the buses were fueled with B5 grade biodiesel without making any engine modifications and the study was conducted during the summer and fall of 2015. The emission values were collected along with the consideration of various engine parameters such as engine temperature, exhaust gas pressure, fuel flow rate command, diesel oxidation catalyst intake temperature and the diesel particulate filter intake temperature. The collected NOx emission values were analyzed, as a function of time, with the help of three different regression techniques and obtained the best results with the Random Forest Regression algorithm. A NOx emission prediction model was established as a function of the engine parameters using the field data and regression results. Elemental analysis was performed on the particulate matter emissions and it was concluded that trace metal and carbon concentrations were higher in the NON-EGR engine buses in comparison to the EGR engine buses.










Hidden Costs of Energy


Book Description

Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.