An Eco-traffic Signal System Based on Connected Vehicle Technology


Book Description

The Intelligent Transportation System uses Dedicated Short Range Communications (DSRC) for vehicle-to-vehicle and vehicle-to-infrastructure communication. This technology is used for applications that intend to increase safety and to improve traffic management and operation. For the latter it promises applications with advanced features in order to reduce fuel consumption. This research presents the design and implementation of a system architecture, diverse algorithms, and communication methods of an Eco-Traffic Signal System. The application uses vehicle-to-infrastructure communications to control traffic light timing with the goal of avoiding unnecessary stops of heavy vehicles, which in turn results in energy savings. The architecture takes advantage of Basic Safety Messages in connected vehicle technology and executes an application inside of the Road Side Unit employed in future traffic intersections. This unit facilitates the necessary algorithms and communication support to instruct the traffic controller to manage signal timing. A proof of concept of the Eco-Traffic Signal System was implemented and its functionality was verified in field tests using commercial DSRC equipment.




Network Wide Signal Control Strategy Base on Connected Vehicle Technology


Book Description

This dissertation discusses network wide signal control strategies base on connected vehicle technology. Traffic congestion on arterials has become one of the largest threats to economic competitiveness, livability, safety, and long-term environmental sustainability in the United States. In addition, arterials usually experience more blockage than freeways, specifically in terms of intersection congestion. There is no doubt that emerging technologies provide unequaled opportunities to revolutionize “retiming” and mitigate traffic congestion. Connected vehicle technology provides unparalleled safety benefits and holds promise in terms of alleviating both traffic congestion and the environmental impacts of future transportation systems. The objective of this research is to improve the mobility, safety and environmental effects at signalized arterials with connected vehicles. The proposed solution of this dissertation is to formulate traffic signal control models for signalized arterials based on connected vehicle technology. The models optimize offset, split, and cycle length to minimize total queue delay in all directions of coordinated intersections. Then, the models are implemented in a centralized system—including closed-loop systems—first, before expanding the results to distributed systems. The benefits of the models are realized at the infant stage of connected vehicle deployment when the penetration rate of connected vehicles is around 10%. Furthermore, the benefits incentivize the growth of the penetration rate for drivers. In addition, this dissertation contains a performance evaluation in traffic delay, volume throughput, fuel consumption, emission, and safety by providing a case study of coordinated signalized intersections. The case study results show the solution of this dissertation could adapt early deployment of connected vehicle technology and apply to future connected vehicle technology development.




Enhanced Traffic Signal Operation Using Connected Vehicle Data


Book Description

As traffic on urban road network increases, congestion and delays are becoming more severe. At grade intersections form capacity bottlenecks in urban road networks because at these locations, capacity must be shared by competing traffic movements. Traffic signals are the most common method by which the right of way is dynamically allocated to conflicting movements. A range of traffic signal control strategies exist including fixed time control, actuated control, and adaptive traffic signal control (ATSC). ATSC relies on traffic sensors to estimate inputs such as traffic demands, queue lengths, etc. and then dynamically adjusts signal timings with the objective to minimize delays and stops at the intersection. Despite, the advantages of these ATSC systems, one of the barriers limiting greater use of these systems is the large number of traffic sensors required to provide the essential information for their signal timing optimization methodologies. A recently introduced technology called connected vehicles will make vehicles capable of providing detailed information such as their position, speed, acceleration rate, etc. in real-time using a wireless technology. The deployment of connected vehicle technology would provide the opportunity to introduce new traffic control strategies or to enhance the existing one. Some work has been done to-date to develop new ATSC systems on the basis of the data provided by connected vehicles which are mainly designed on the assumption that all vehicles on the network are equipped with the connected vehicle technology. The goals of such systems are to: 1) provide better performance at signalized intersections using enhanced algorithms based on richer data provided by the connected vehicles; and 2) reduce (or eliminate) the need for fixed point detectors/sensors in order to reduce deployment and maintenance costs. However, no work has been done to investigate how connected vehicle data can improve the performance of ATSC systems that are currently deployed and that operate using data from traditional detectors. Moreover, achieving a 100% market penetration of connected vehicles may take more than 30 years (even if the technology is mandated on new vehicles). Therefore, it is necessary to provide a solution that is capable of improving the performance of signalized intersections during this transition period using connected vehicle data even at low market penetration rates. This research examines the use of connected vehicle data as the only data source at different market penetration rates aiming to provide the required inputs for conventional adaptive signal control systems. The thesis proposes various methodologies to: 1) estimate queues at signalized intersections; 2) dynamically estimate the saturation flow rate required for optimizing the timings of traffic signals at intersections; and 3) estimate the free flow speed on arterials for the purpose of optimizing offsets between traffic signals. This thesis has resulted in the following findings: 1. Connected vehicle data can be used to estimate the queue length at signalized intersections especially for the purpose of estimating the saturation flow rate. The vehicles' length information provided by connected vehicles can be used to enhance the queue estimation when the traffic composition changes on a network. 2. The proposed methodology for estimating the saturation flow rate is able to estimate temporally varying saturation flow rates in response to changing network conditions, including lane blockages and queue spillback that limit discharge rates, and do so with an acceptable range of errors even at low level of market penetration of connected vehicles. The evaluation of the method for a range of traffic Level of Service (LOS) shows that the maximum observed mean absolute relative error (6.2%) occurs at LOS F and when only 10% of vehicles in the traffic stream are connected vehicles. 3. The proposed method for estimating the Free Flow Speed (FFS) on arterial roads can provide estimations close to the known ground truth and can respond to changes in the FFS. The results also show that the maximum absolute error of approximately 4.7 km/h in the estimated FFS was observed at 10% market penetration rate of connected vehicles. 4. The results of an evaluation of an adaptive signal control system based on connected vehicle data in a microsimulation environment show that the adaptive signal control system is able to adjust timings of signals at intersections in response to changes in the saturation flow rate and free flow speed estimated from connected vehicle data using the proposed methodologies. The comparison of the adaptive signal control system against a fixed time control at 20% and 100% CV market penetration rates shows improvements in average vehicular delay and average number of stops at both market penetration rates and though improvements are larger for 100% CV LMP, approximately 70% of these improvements are achieved at 20% CV LMP.




Traffic Signal Control in a Connected and Autonomous Vehicle Environment Considering Pedestrians


Book Description

Traffic signals help to maintain order in urban traffic networks and reduce vehicle conflicts by dynamically assigning right-of-way to different vehicle movements. However, by temporarily stopping vehicle movements at regular intervals, traffic signals are a major source of urban congestion and cause increased vehicle delay, fuel consumption, and environmental pollution. Connected and Autonomous Vehicle technology may be utilized to optimize traffic operations at signalized intersections, since connected vehicles have the ability to communicate with the surrounding infrastructure and autonomous vehicles can follow the instructions from the signal or a central control system. Connected vehicle information received by a signal controller can be used to help adjust signal timings to tailor to the specific dynamic vehicle demand. Information about the signal timing plan can then be communicated back to the vehicles so that they can adjust their speeds/trajectories to further improve traffic operations. Based on a thorough literature review of existing studies in the area of signal control utilizing information from connected and autonomous vehicles, three research gaps are found: 1) application are limited to unrealistic intersection configurations; 2) methods are limited to a single mode; or, 3) methods only optimize the average value of measure of effectiveness while ignoring the distribution among vehicles. As a part of this dissertation, several methods will be proposed to increase computational efficiency of an existing CAV-based joint signal timing and vehicle trajectory optimization algorithm so that it can be applied to more realistic intersection settings without adding computational burden. Doing so requires the creation of new methods to accommodate features like multiple lanes on each approach, more than two approaches and turning maneuvers. Methods to incorporate human-driven cooperative vehicles and pedestrians are also proposed and tested. A more equitable traffic signal control method is also designed.




Traffic Signal Control at Connected Vehicle Equipped Intersections


Book Description

The dissertation presents a connected vehicle based traffic signal control model (CVTSCM) for signalized arterials. The model addresses different levels of traffic congestion starting with the initial deployment of connected vehicle technologies focusing on two modules created in CVTSCM. For near/under-saturated intersections, an arterial-level traffic progression optimization model (ALTPOM) is being proposed. ALTPOM improves traffic progression by optimizing offsets for an entire signalized arterial simultaneously. To optimize these offsets, splits of coordinated intersections are first adjusted to balance predicted upcoming demands of all approaches at individual intersections. An open source traffic simulator was selected to implement and evaluate the performance of ALTPOM. The case studies’ field signal timing plans were coordinated and optimized using TRANSYT-7F as the benchmark. ALTPOM was implemented with connected vehicles penetration rates at 25% and 50%, ALTPOM significantly outperforms TRANSYT-7F with at least 26.0% reduction of control delay (sec/vehicle) and a 4.4% increase of throughput for both directions of major and minor streets. This technique differs from traditional traffic coordination which prioritizes major street traffic, and thereby generally results in degrading performance on minor streets. ALTPOM also provides smooth traffic progression for the coordinated direction with little impact on the opposite direction. The performance of ALTPOM improves as the penetration rate of connected vehicles increases. For saturated/oversaturated conditions, two queue length management based Active Traffic Management (ATM) strategies are proposed, analytically investigated, and experimentally validated. The first strategy distributes as much green time as possible for approaches with higher saturation discharge rate in order to reduce delay. For the second approach, green times are allocated to balance queue lengths of major and minor streets preventing queue spillback or gridlock. Both strategies were formulated initially using uniform arrival and departure, and then validated using field vehicle trajectory data. After validation of the modules, the effectiveness of CVTSCM is proven. Then, conclusions and recommendations for future researches are presented at the end.




Mobility and Environment Improvement of Signalized Networks Through Vehicle-to-Infrastructure (V2I) Communications


Book Description

Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned each year by idling engines, releasing tons of unnecessary toxic pollutants to the atmosphere. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with numerous communication and computing devices. In this thesis, an initial comprehensive literature search is carried out on topics related to traffic flow models, connected vehicles, eco-driving, traffic signal timing, and the application of connected vehicle technologies in improving the operation of signalized networks. Then a car-following model and an emission model are combined to simulate the behavior of vehicles at signalized intersections and calculate traffic delays in queues, vehicle emissions and fuel consumption. Next, a strategy to provide mobility and environment improvements in signalized networks is presented. In this strategy, the control variable is the advisory speed limit, which is designed to smooth vehicles' speed profiles taking advantage of Vehicle-to-Intersection communication. Finally, the performance of the control system is studied depending on market penetration rate and traffic conditions, as well as communication, positioning and network characteristics. In particular, savings of around 15% in user delays and around 8% in fuel consumption and CO2 emissions are demonstrated.




Energy-Efficient Driving of Road Vehicles


Book Description

This book elaborates the science and engineering basis for energy-efficient driving in conventional and autonomous cars. After covering the physics of energy-efficient motion in conventional, hybrid, and electric powertrains, the book chiefly focuses on the energy-saving potential of connected and automated vehicles. It reveals how being connected to other vehicles and the infrastructure enables the anticipation of upcoming driving-relevant factors, e.g. hills, curves, slow traffic, state of traffic signals, and movements of nearby vehicles. In turn, automation allows vehicles to adjust their motion more precisely in anticipation of upcoming events, and to save energy. Lastly, the energy-efficient motion of connected and automated vehicles could have a harmonizing effect on mixed traffic, leading to additional energy savings for neighboring vehicles. Building on classical methods of powertrain modeling, optimization, and optimal control, the book further develops the theory of energy-efficient driving. In addition, it presents numerous theoretical and applied case studies that highlight the real-world implications of the theory developed. The book is chiefly intended for undergraduate and graduate engineering students and industry practitioners with a background in mechanical, electrical, or automotive engineering, computer science or robotics.




Mobile Oriented Future Internet (MOFI)


Book Description

This Special Issue consists of seven papers that discuss how to enhance mobility management and its associated performance in the mobile-oriented future Internet (MOFI) environment. The first two papers deal with the architectural design and experimentation of mobility management schemes, in which new schemes are proposed and real-world testbed experimentations are performed. The subsequent three papers focus on the use of software-defined networks (SDN) for effective service provisioning in the MOFI environment, together with real-world practices and testbed experimentations. The remaining two papers discuss the network engineering issues in newly emerging mobile networks, such as flying ad-hoc networks (FANET) and connected vehicular networks.




Autonomous and Connected Heavy Vehicle Technology


Book Description

Autonomous and Connected Heavy Vehicle Technology presents the fundamentals, definitions, technologies, standards and future developments of autonomous and connected heavy vehicles. This book provides insights into various issues pertaining to heavy vehicle technology and helps users develop solutions towards autonomous, connected, cognitive solutions through the convergence of Big Data, IoT, cloud computing and cognition analysis. Various physical, cyber-physical and computational key points related to connected vehicles are covered, along with concepts such as edge computing, dynamic resource optimization, engineering process, methodology and future directions. The book also contains a wide range of case studies that help to identify research problems and an analysis of the issues and synthesis solutions. This essential resource for graduate-level students from different engineering disciplines such as automotive and mechanical engineering, computer science, data science and business analytics combines both basic concepts and advanced level content from technical experts. Covers state-of-the-art developments and research in vehicle sensor technology, vehicle communication technology, convergence with emerging technologies, and vehicle software and hardware integration Addresses challenges such as optimization, real-time control systems for distance and steering mechanism, and cognitive and predictive analysis Provides complete product development, commercial deployment, technological and performing costs and scaling needs




Information and Communication Technology for Sustainable Development


Book Description

Information and Communication Technology for Sustainable Development shows how ICT, as an enabler for all spheres of development, can help innovate business processes and operations, and provide faster integration of new technologies into business systems. Focused on sustainability, the book addresses strategic approaches to cope with a range of climatic, environmental, cyber-security threats and other global risks, and aims to promote prosperity and economic growth. Furthermore, it explores how the adoption of new technologies, and collective action based upon a strategic behavioral theory of new leadership, can be applied when responding to specific set of conditions that allow for the proposed strategies to cope with risks. Information technology and strategic planning complement each other to attain the sustainable development goals (SDGs). Risk management frameworks, business continuity systems, and strategic planning methodologies such as mechanism design theory, strategic adaptive cognition (SAC), and risk mechanism theory (RMT) are the fundamental components needed to have a universal approach embedded into the national development plans agenda. As technology no longer follows an orderly, linear path, but improves exponentially, developing a strategic approach to ICT implementation help world leaders in the difficult but inspiring task of making a sustainable world and consequently find solutions to achieve the SDGs and the desired growth pattern that must be sustained, inclusive and equitable. Features: Discusses for the first time the potential of ICT as a transformative power in finding solutions to climatic and economic issues. Illustrates comprehensive strategic planning for leaders to implement in both public and private organizations. Integrates standards and frameworks in the context of sustainable development along with the UN Sustainable Development Goals. Describes in detail how mechanism design, risk management, business continuity systems, a comprehensive strategic planning using SAC (Strategic Adaptive Cognition) and risk mechanism theory can be used to address environmental risks and attain sustainable development goals (SDGs). Explains eHealth as an adaptation strategy to address future changes in climate and impacts, and the links between mitigation and adaptation to ICTs.