Introduction to Hyperfunctions and Their Integral Transforms


Book Description

This textbook presents an introduction to the subject of generalized functions and their integral transforms by an approach based on the theory of functions of one complex variable. It includes many concrete examples.




Analytic Partial Differential Equations


Book Description

This book provides a coherent, self-contained introduction to central topics of Analytic Partial Differential Equations in the natural geometric setting. The main themes are the analysis in phase-space of analytic PDEs and the Fourier–Bros–Iagolnitzer (FBI) transform of distributions and hyperfunctions, with application to existence and regularity questions. The book begins by establishing the fundamental properties of analytic partial differential equations, starting with the Cauchy–Kovalevskaya theorem, before presenting an integrated overview of the approach to hyperfunctions via analytic functionals, first in Euclidean space and, once the geometric background has been laid out, on analytic manifolds. Further topics include the proof of the Lojaciewicz inequality and the division of distributions by analytic functions, a detailed description of the Frobenius and Nagano foliations, and the Hamilton–Jacobi solutions of involutive systems of eikonal equations. The reader then enters the realm of microlocal analysis, through pseudodifferential calculus, introduced at a basic level, followed by Fourier integral operators, including those with complex phase-functions (à la Sjöstrand). This culminates in an in-depth discussion of the existence and regularity of (distribution or hyperfunction) solutions of analytic differential (and later, pseudodifferential) equations of principal type, exemplifying the usefulness of all the concepts and tools previously introduced. The final three chapters touch on the possible extension of the results to systems of over- (or under-) determined systems of these equations—a cornucopia of open problems. This book provides a unified presentation of a wealth of material that was previously restricted to research articles. In contrast to existing monographs, the approach of the book is analytic rather than algebraic, and tools such as sheaf cohomology, stratification theory of analytic varieties and symplectic geometry are used sparingly and introduced as required. The first half of the book is mainly pedagogical in intent, accessible to advanced graduate students and postdocs, while the second, more specialized part is intended as a reference for researchers.




Mathematical Reviews


Book Description










The Analysis of Linear Partial Differential Operators I


Book Description

The main change in this edition is the inclusion of exercises with answers and hints. This is meant to emphasize that this volume has been written as a general course in modern analysis on a graduate student level and not only as the beginning of a specialized course in partial differen tial equations. In particular, it could also serve as an introduction to harmonic analysis. Exercises are given primarily to the sections of gen eral interest; there are none to the last two chapters. Most of the exercises are just routine problems meant to give some familiarity with standard use of the tools introduced in the text. Others are extensions of the theory presented there. As a rule rather complete though brief solutions are then given in the answers and hints. To a large extent the exercises have been taken over from courses or examinations given by Anders Melin or myself at the University of Lund. I am grateful to Anders Melin for letting me use the problems originating from him and for numerous valuable comments on this collection. As in the revised printing of Volume II, a number of minor flaws have also been corrected in this edition. Many of these have been called to my attention by the Russian translators of the first edition, and I wish to thank them for our excellent collaboration.







The Langlands Classification and Irreducible Characters for Real Reductive Groups


Book Description

This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.




South African national bibliography


Book Description

Classified list with author and title index.




Introduction to the Division by Zero Calculus


Book Description

The common sense on the division by zero with the long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on differential coefficients we have a great missing since tan(π/2) = 0. Our mathematics is also wrong in elementary mathematics on the division by zero. In this book in a new and definite sense, we will show and give various applications of the division by zero 0/0 = 1/0 = z/0 = 0. In particular, we will introduce several fundamental concepts in calculus, Euclidean geometry, analytic geometry, complex analysis and differential equations. We will see new properties on the Laurent expansion, singularity, derivative, extension of solutions of differential equations beyond analytical and isolated singularities, and reduction problems of differential equations. On Euclidean geometry and analytic geometry, we will find new fields by the concept of the division by zero. We will collect many concrete properties in mathematical sciences from the viewpoint of the division by zero. We will know that the division by zero is our elementary and fundamental mathematics.