An Engineering Guide to Photoinjectors


Book Description

This book is an introduction to the basic theory and engineering of advanced electron beam sources known as photoinjectors. Photoinjectors produce relativistic electrons for exciting new devices such as x-ray free electron lasers and the polarized beams for very high energy physics linear colliders. The chapters are written by renowned experts in the field who share their working knowledge of the technologies needed for designing and building photoinjectors.




Theoretical Treatment of Electron Emission and Related Phenomena


Book Description

This book introduces readers to the physics governing electron emission under high voltages and temperatures, and highlights recent modeling and numerical developments for describing these phenomena. It begins with a brief introduction, presenting several applications that have driven electron emission research in the last few decades. The authors summarize the most relevant theories including the physics of thermo-field electron emission and the main characteristic parameters. Based on these theories, they subsequently describe numerical multi-physics models and discuss the main findings on the effect of space charges, emitter geometry, pulse duration, etc. Beyond the well-known photoelectric effect, the book reviews recent advanced theories on photon-metal interaction. Distinct phenomena occur when picosecond and femtosecond lasers are used to irradiate a surface. Their consequences on metal electron dynamics and heating are presented and discussed, leading to various emission regimes – in and out of equilibrium. In closing, the book reviews the effects of electron emission on high-voltage operation in vacuum, especially breakdown and conditioning, as the most common examples. The book offers a uniquely valuable resource for graduate and PhD students whose work involves electron emission, high-voltage holding, laser irradiation of surfaces, vacuum or discharge breakdown, but also for academic researchers and professionals in the field of accelerators and solid state physics with an interest in this highly topical area.







Reviews Of Accelerator Science And Technology - Volume 7: Colliders


Book Description

The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed.Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton-proton, proton-antiproton, electron-positron, electron-proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timely that RAST Volume 7 is dedicated to Colliders.




Theory and Design of Charged Particle Beams


Book Description

Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.







Principles of Charged Particle Acceleration


Book Description

This authoritative text offers a unified, programmed summary of the principles underlying all charged particle accelerators — it also doubles as a reference collection of equations and material essential to accelerator development and beam applications. The only text that covers linear induction accelerators, the work contains straightforward expositions of basic principles rather than detailed theories of specialized areas. 1986 edition.




High-Field Science


Book Description

High Field Science is a proceedings volume from a meeting at Lawrence Livermore Laboratory, and contains papers from the top experts in the fields of ultraintense laser technology, laser fusion energy, high energy laser electron acceleration, bright X-ray sources by lasers, laboratory laser astrophysics, and applications to relativity, high density and high energy physics.




Handbook of Accelerator Physics and Engineering


Book Description

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing more than 100 new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to the common formulae of previous compilations, hard-to-find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world''s most able practitioners of the art and science of accelerators.The eight chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities associated with the various interactions mentioned. A chapter on operational considerations includes discussions on the assessment and correction of orbit and optics errors, real-time feedbacks, generation of short photon pulses, bunch compression, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement and acceleration (both normal conducting and superconducting) receive detailed treatment in a subsystems chapter, beam measurement techniques and apparatus being treated therein as well. The closing chapter gives data and methods for radiation protection computations as well as much data on radiation damage to various materials and devices.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.