Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 36 (thesis year 1991) a total of 11,024 thesis titles from 23 Canadian and 161 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 36 reports theses submitted in 1991, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.







Scramjet Combustion


Book Description

Scramjet Combustion explores the development of a high-speed scramjet engine operating in the supersonic/hypersonic range for various air and space transport applications. The book explains the basic structure, components, working cycle, and the relevant governing equations in a clear manner that speaks to both advanced and more novice audiences. Particular attention is paid to efficient air–fuel combustion, looking at both the underlying fundamentals of combustion as well strategies for obtaining optimum combustion efficiency. Methods for reaching the chemically correct air–fuel ratio, subsequent flame, and combustion stabilization as air enters at supersonic speed are also outlined. Further, it includes the continuous on-going efforts, innovations, and advances with respect to the design modification of scramjet combustors, as well as different strategies of fuel injections for obtaining augmented performance while highlighting the current and future challenges. - Outlines the fundamentals of scramjet engines including their basic structure and components, working cycle, governing equations, and combustion fundamentals affecting the combustion and mixing processes - Presents new design modifications of scramjet combustors and different fuel injection strategies including combined fuel injection approaches - Discusses core topics such as chemical kinetics in supersonic flow, fuel–air mixing methods, strategies for combating combustion difficulties, and subsequent flame and combustion stabilization that can be applied to scramjets - Describes the pedagogy for computational approaches in simulating supersonic flows




NASA SP.


Book Description







New Trends in Fluid Mechanics Research


Book Description

This volume is the proceedings of the Fifth International Conference on Fluid Mechanics (ICFM-V), the primary forum for the presentation of technological advances and research results in the fields of theoretical, experimental, and computational Fluid Mechanics. Topics include: flow instability and turbulence, aerodynamics and gas dynamics, industrial and environmental fluid mechanics, biofluid mechanics, geophysical fluid mechanics, plasma and magneto-hydrodynamics, and others.







Turbulent Shear Layers in Supersonic Flow


Book Description

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.