Fundamentals of Gas Shale Reservoirs


Book Description

Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations




Enhanced Oil Recovery in Shale and Tight Reservoirs


Book Description

Oil Recovery in Shale and Tight Reservoirs delivers a current, state-of-the-art resource for engineers trying to manage unconventional hydrocarbon resources. Going beyond the traditional EOR methods, this book helps readers solve key challenges on the proper methods, technologies and options available. Engineers and researchers will find a systematic list of methods and applications, including gas and water injection, methods to improve liquid recovery, as well as spontaneous and forced imbibition. Rounding out with additional methods, such as air foam drive and energized fluids, this book gives engineers the knowledge they need to tackle the most complex oil and gas assets. - Helps readers understand the methods and mechanisms for enhanced oil recovery technology, specifically for shale and tight oil reservoirs - Includes available EOR methods, along with recent practical case studies that cover topics like fracturing fluid flow back - Teaches additional methods, such as soaking after fracturing, thermal recovery and microbial EOR




Deep Rock Mechanics: From Research to Engineering


Book Description

At present, deep earth resources remain poorly understood and entirely under-utilised. There is a growing appreciation of the important role deep earth will play in future sustainability, particularly in opportunities for new and sustainable large-scale energy alternatives, and extraction of resources through mining and greenhouse mitigation. Deep Rock Mechanics: From Research to Engineering is a collection of papers on the effective development of deep earth resources, which were presented at the International Conference on Geo-mechanics, Geo-Energy and Geo-Resources 2018 (Chengdu, P.R. China, 22-24 September 2018). The contributions aim at breaking beyond existing patterns of discovery, to advance research on geomechanical and geophysical processes in deep earth resources and energy development, enhancing deep earth energy and mineral extraction and mitigating harmful atmospheric emissions. Deep Rock Mechanics: From Research to Engineering covers a wide range of topics: 1. Deep rock mechanics and mining theory 2. Water resources development and protection 3. Unconventional oil and gas extractions 4. CO2 sequestrations technologies and nuclear waste disposal 5. Geothermal energy 6. Mining engineering 7. Petroleum engineering 8. Geo-environmental engineering 9. Civil geotechnical engineering Deep Rock Mechanics: From Research to Engineering promotes safer and greener ways for energy and resource production at great depth, and will serve as a must-have reference for academics and professionals involved or interested in geo-mechanics, geo-energy, and geo-resources.




Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications


Book Description

Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.




Youth Technical Sessions Proceedings


Book Description

Over a decade ago the World Petroleum Council launched an initiative to hold an international professional youth forum. The first forum took place in October 2004 in China, and had as its motto: "Young people and innovations are the future of the oil industry." It was the first major event in the history of the WPC in which young professionals and academics had the leading role, and had the opportunity to exchange their ideas in insights on the oil and gas industry with industry leaders and main representatives of the oil and gas industry. Since then, issues of professional development and the disclosure of the creative potential of young industry professionals have been on the agenda of the World Petroleum Council as one of the key areas for the development of international cooperation focused on a strategic perspective. The Future Leaders Forum of the World Petroleum Council VI is the largest international platform for professional communication of young specialists in the oil and gas industry. The contributions in this book are much of interest to professionals and scientists interested or involved in the oil and gas industry or related areas.




Flow and Transport Properties of Unconventional Reservoirs 2018


Book Description

Unconventional reservoirs are usually complex and highly heterogeneous, such as shale, coal, and tight sandstone reservoirs. The strong physical and chemical interactions between fluids and pore surfaces lead to the inapplicability of conventional approaches for characterizing fluid flow in these low-porosity and ultralow-permeability reservoir systems. Therefore, new theories and techniques are urgently needed to characterize petrophysical properties, fluid transport, and their relationships at multiple scales for improving production efficiency from unconventional reservoirs. This book presents fundamental innovations gathered from 21 recent works on novel applications of new techniques and theories in unconventional reservoirs, covering the fields of petrophysical characterization, hydraulic fracturing, fluid transport physics, enhanced oil recovery, and geothermal energy. Clearly, the research covered in this book is helpful to understand and master the latest techniques and theories for unconventional reservoirs, which have important practical significance for the economic and effective development of unconventional oil and gas resources.







Unconventional Reservoir Geomechanics


Book Description

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.




Fundamentals of Rock Mechanics


Book Description




Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs


Book Description

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. - Includes both practical and theoretical research for the characterization of unconventional reservoirs - Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs - Presents the latest research in the fluid transport processes in unconventional reservoirs