Three-dimensional Vortex-body Interaction in a Viscous Fluid


Book Description

An experimental and computational study of the impact of a vortex with a body oriented normal to the vortex axis was performed. Particular focus was placed on understanding characteristics of the secondary vorticity ejected from the body and the interaction of the secondary vorticity with the primary vortex. Since both onset of boundary layer separation and the form of the secondary vorticity structures are sensitive to variation of the velocity normal to the body axis, the effect of normal velocity on vortex-body interaction was carefully examined. The physical features of the flow evolution were categorized in terms of an impact parameter and a thickness parameter, which respectively represent ratios of velocity and length scales associated with the vortex to those associated with the flow in the absence of the vortex. Experiments were performed using a combination of laser-induced fluorescence (LIF) flow visualization and particle-image velocimetry (PIV) in a water tank to examine the form of the secondary vorticity structures with both "high" and "low" values of the impact parameter for normal vortex interaction with a circular cylinder and with a thin blade. A new type of Lagrangian vorticity method based on a tetrahedral mesh was developed and applied to compute the secondary vorticity evolution during vortex-cylinder interaction. Computations were also performed for model problems to examine in detail wrapping of a vortex loop around a columnar vortex and impulsive cutting of a columnar vortex with finite axial flow.




Vortex Methods: Selected Papers Of The First International Conference On Vortex Methods


Book Description

Vortex methods have been developed and applied to many kinds of flows related to various problems in wide engineering and scientific fields. The purpose of the First International conference on Vortex methods was to provide an opportunity for engineers and scientists to present their achievements, exchange ideas and discuss new developments in mathematical and physical modeling techniques and engineering applications of vortex methods.







Numerical Mathematics and Applications


Book Description

Numerical Mathematics and Applications










Unsteady, Viscous, Circular Flow. Part Iii. Application to the Ranque-hilsch Vortex Tube


Book Description

A new explanation of the vortex tube is presented. The proposed model leads to an equivalent unsteady-flow analysis for the development of the flow in the vortex tube. Using this analysis, radial distributions of velocity and temperature can now be calculated at successive axial positions in the tube. The qualitative similarity in the development of the calculated and experimental sets of profiles with axial position is considered especially significant. A theory of vortex tube performance based upon an idealized three-dimensional flow pattern for the vortex tube is derived. Some experiments relating the idealized vortex tube analyzed to previous vortex tube measurements are described. (Author).







NBS Special Publication


Book Description