Capitalizing on Convective Instabilities in a Streamwise Vortex-wall Interaction


Book Description

Abstract: Secondary flows in turbomachinery and similar engineering applications are often dominated by a single streamwise vortex structure. Investigations into the control of these flows using periodic forcing have shown a discrete range of forcing frequency where the vortex is particularly receptive. Forcing in this frequency range results in increased movement of the vortex and decreased total pressure losses. Based on the hypothesis that this occurs due to a linear instability associated with the Crow instability, a fundamental study of instabilities in streamwise vortex-wall interactions is performed. In the first part of this study a three-dimensional vortex-wall interaction is computed and analyzed for the presence of convective instabilities. It is shown that the Crow instability and a range of elliptic instabilities exist in a similar form as to what has been studied in counter-rotating vortex pairs. The Crow instability is particularly affected by the presence of a solid no-slip wall. Differences in the amplification rate, oscillation angle, Reynolds number sensitivity, and transient growth are each discussed. The spatial development of the vortex-wall interaction is shown to have a further stabilizing effect on the Crow instability due to a "lift-off" behavior. Despite these discoveries, it is still shown that amplitude growth on the order of 20% is possible and transient growth mechanisms might result in an order-of-magnitude of further growth if properly initiated. With these results in mind, an experiment is developed to isolate the streamwise vortex-wall interaction. Through the use of a vortex generating wing section and a suspended splitter plate, a stable interaction is created that agrees favorably in structure to the three-dimensional computations. A small synthetic jet actuator is mounted on the splitter plate below the vortex. Phase-locked stereo-PIV velocity data and surface pressure taps both show spatial amplification of the disturbance in a frequency range which agrees well with the prediction for the Crow instability. An analysis of the vortex response shows a primarily horizontal oscillation of the vortex column which strongly interacts with the secondary vortex structure that develops in the boundary layer.







The Origin of Turbulence in Near-Wall Flows


Book Description

The Origin of Species Charles Darwin The origin of turbulence in fluids is a long-standing problem and has been the focus of research for decades due to its great importance in a variety of engineering applications. Furthermore, the study of the origin of turbulence is part of the fundamental physical problem of turbulence description and the philosophical problem of determinism and chaos. At the end of the nineteenth century, Reynolds and Rayleigh conjectured that the reason of the transition of laminar flow to the 'sinuous' state is in stability which results in amplification of wavy disturbances and breakdown of the laminar regime. Heisenberg (1924) was the founder of linear hydrody namic stability theory. The first calculations of boundary layer stability were fulfilled in pioneer works of Tollmien (1929) and Schlichting (1932, 1933). Later Taylor (1936) hypothesized that the transition to turbulence is initi ated by free-stream oscillations inducing local separations near wall. Up to the 1940s, skepticism of the stability theory predominated, in particular due to the experimental results of Dryden (1934, 1936). Only the experiments of Schubauer and Skramstad (1948) revealed the determining role of insta bility waves in the transition. Now it is well established that the transition to turbulence in shear flows at small and moderate levels of environmental disturbances occurs through development of instability waves in the initial laminar flow. In Chapter 1 we start with the fundamentals of stability theory, employing results of the early studies and recent advances.




Vortex Packets in Turbulent Boundary Layers with Application to High Reynolds Number Effects, Isolated and Patterned Roughness, Near Wall Modeling and Strategies for Drag Reduction


Book Description

The scientific goals of this work are to develop a complete physical model of turbulence in wall boundary layers and to develop means of describing and modeling surface roughness effect. We make use of recent developments in our understanding of the mechanistic structure of near wall turbulence for smooth walls at low Reynolds numbers to understand how large Reynolds number and wall roughness affect turbulence. We build upon experimental and computational evidence from smooth walls to extend the mechanistic picture of turbulence based on a paradigm of hierarchy of hairpin packets to high Reynolds number, when roughness effect increases in importance. Both experimental measurements of velocity field in smooth and rough walls and direct numerical simulations of evolution and interaction of hairpin vortices are used.




Vortex-Induced Boundary Layer Separation


Book Description

Unsteady boundary-layer separation at high Reynolds numbers, Re, is considered on a theoretical and computational basis. Whenever an external inviscid flow induces a region of adverse pressure gradient near a wall, the development of recirculating eddies in the boundary layer is common. An unsteady viscous-inviscid interaction often follows in the form of a local boundary-layer eruption and abrupt ejection of near-wall vorticity into the external flow. The dynamics of this process, as it develops in an initially thin boundary layer, is considered. As interaction ensues, the flow focuses into a band which progressively narrows in the streamwise direction. The complex flow development is extremely difficult to resolve using conventional Eulerian methods; here the boundary-layer solutions are obtained using Lagrangian methods, wherein trajectories of a large number of fluid particles are computed. The algorithms developed are general but are applied here to the problem of the boundary-layer induced by a two-dimensional vortex above an infinite plane wall. Solutions are obtained for the limit problem Re approaches limit of infinity, and for Re large but finite using an interacting boundary-layer approach. The present results describe the initial stages of a strong unsteady viscous-inviscid interaction; apparently it is necessary to account for the effect of normal pressure variations to continue the interaction. Keywords: Vortices; Turbulent boundary layer; Turbulent bursts; Boundary-layer eruptions; Unsteady interactions; Boundary layer flow separation. (edc).




Fluid Vortices


Book Description

Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.