A Review of NASA's 'Atmospheric Effects of Stratospheric Aircraft' Project


Book Description

The NRC Panel on the Atmospheric Effects of Aviation (PAEAN) was established to provide guidance to NASA's Atmospheric Effects of Aviation Program (AEAP) by evaluating the appropriateness of the program's research plan, appraising the project-sponsored results relative to the current state of scientific knowledge, identifying key scientific uncertainties, and suggesting research activities likely to reduce those uncertainties. Over the last few years, the panel has written periodic reviews of both the subsonic aviation (Subsonic Assessment-SASS) and the supersonic aviation (Atmospheric Effects of Stratospheric Aircraft-AESA) components of AEAP, including: An Interim Review of the Subsonic Assessment Project (1997); An Interim Assessment of AEAP's Emissions Characterization and Near-Field Interactions Elements (1997); An Interim Review of the AESA Project: Science and Progress (1998); Atmospheric Effects of Aviation: A Review of NASA's Subsonic Assessment Project (1998). This report constitutes the final review of AESA and will be the last report written by this panel. The primary audience for these reports is the program managers and scientists affiliated with AEAP, although in some cases the topics discussed are of interest to a wider audience.







Atmospheric Effects of Aviation


Book Description

Aviation is an integral part of the global transportation network, and the number of flights worldwide is expected to grow rapidly in the coming decades. Yet, the effects that subsonic aircraft emissions may be having upon atmospheric composition and climate are not fully understood. To study such issues, NASA sponsors the Atmospheric Effects of Aviation Program (AEAP). The NRC Panel on Atmospheric Effects of Aviation is charged to evaluate AEAP, and in this report, the panel is focusing on the subsonic assessment (SASS) component of the program. This evaluation of SASS/AEAP was based on the report Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Sub-sonic Technology Program, on a strategic plan developed by SASS managers, and on other relevant documents.




The Atmospheric Effects of Stratospheric Aircraft Project


Book Description

Scientists and policy-makers alike are concerned that operation of a fleet of high-speed civil transport (HSCT) aircraft could significantly affect the global atmosphere. HSCT emissions may have a direct effect on the chemistry of the atmosphere, leading to changes in the distribution of ozone; they may also have indirect effects on ozone and on global climate through coupling with radiative and dynamical processes in the atmosphere. An assessment of the atmospheric impact of a fleet of HSCTs thus requires not only an understanding of the chemistry of the natural stratosphere and its possible perturbations by HSCT emissions, but also an understanding of the pathways for transport of HSCT emissions within the atmosphere, and the resulting temporal and spatial distribution of HSCT emissions. The results of NASA's Atmospheric Effects of Stratospheric Aircraft (AESA) project were summarized in a 1995 NASA assessment. The present report looks at that summary and at more recent work to evaluate the state of the science. AESA has made good progress in the past few years. Satellite and aircraft observations have elucidated important aspects of large-scale transport processes. Field campaigns have provided a much better picture of the relative importance, below 20 km altitude, of the major catalytic cycles for ozone destruction. Careful intercomparisons of assessment models have led to reduction of some of the differences among the models. However, a number of uncertainties and inconsistencies still remain.




Books In Print 2004-2005


Book Description




Aviation and the Global Atmosphere


Book Description

This Intergovernmental Panel on Climate Change Special Report is the most comprehensive assessment available on the effects of aviation on the global atmosphere. The report considers all the gases and particles emitted by aircraft that modify the chemical properties of the atmosphere, leading to changes in radiative properties and climate change, and modification of the ozone layer, leading to changes in ultraviolet radiation reaching the Earth. This volume provides accurate, unbiased, policy-relevant information and is designed to serve the aviation industry and the expert and policymaking communities.










Negative Emissions Technologies and Reliable Sequestration


Book Description

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.