An Interim Report on NASA's Draft Space Technology Roadmaps


Book Description

For the National Aeronautics and Space Administration (NASA) to achieve many of its space science and exploration goals over the next several decades, dramatic advances in space technology will be necessary. NASA has developed a set of 14 draft roadmaps to guide the development of such technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each roadmap focuses on a particular technology area. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The success of OCT's technology development program is essential, because technological breakthroughs have long been the foundation of NASA's successes, from its earliest days, to the Apollo program, to a vast array of space science missions and the International Space Station. An Interim Report of NASA's Technology Roadmap identifies some gaps in the technologies included in the individual roadmaps. The report suggests that the effectiveness of the NASA space technology program can be enhanced by employing proven management practices and principles including increasing program stability, addressing facility issues, and supporting adequate flight tests of new technologies. This interim report provides several additional observations that will be expanded on in the final report to be released in 2012.







NASA Space Technology Roadmaps and Priorities


Book Description

NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.




NASA Space Technology Roadmaps and Priorities Revisited


Book Description

Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio. NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA's space technology roadmaps, which are expected to occur every 4 years.




An Interim Report on NASA's Draft Space Technology Roadmaps


Book Description

For the National Aeronautics and Space Administration (NASA) to achieve many of its space science and exploration goals over the next several decades, dramatic advances in space technology will be necessary. NASA has developed a set of 14 draft roadmaps to guide the development of such technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each roadmap focuses on a particular technology area. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The success of OCT's technology development program is essential, because technological breakthroughs have long been the foundation of NASA's successes, from its earliest days, to the Apollo program, to a vast array of space science missions and the International Space Station. An Interim Report of NASA's Technology Roadmap identifies some gaps in the technologies included in the individual roadmaps. The report suggests that the effectiveness of the NASA space technology program can be enhanced by employing proven management practices and principles including increasing program stability, addressing facility issues, and supporting adequate flight tests of new technologies. This interim report provides several additional observations that will be expanded on in the final report to be released in 2012.




A Constrained Space Exploration Technology Program


Book Description

In January 2004, President George W. Bush announced the Vision for Space Exploration (VSE), which instructed NASA to "Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations," among other objectives. As acknowledged in the VSE, significant technology development will be necessary to accomplish the goals it articulates. NASA's Exploration Technology Development Program (ETDP) is designed to support, develop, and ultimately provide the necessary technologies to meet the goals of the VSE. This book, a review of the ETDP, is broadly supportive of the intent and goals of the VSE, and finds the ETDP is making progress towards the stated goals of technology development. However, the ETDP is operating within significant constraints which limit its ability to successfully accomplish those goals-the still dynamic nature of the Constellation Program requirements, the constraints imposed by a limited budget, the aggressive time scale of early technology deliverables, and the desire to fully employ the NASA workforce.




NASA Space Technology Roadmaps and Priorities Revisited


Book Description

Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio. NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA's space technology roadmaps, which are expected to occur every 4 years.




A Constrained Space Exploration Technology Program


Book Description

In January 2004, President George W. Bush announced the Vision for Space Exploration (VSE), which instructed NASA to "Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations," among other objectives. As acknowledged in the VSE, significant technology development will be necessary to accomplish the goals it articulates. NASA's Exploration Technology Development Program (ETDP) is designed to support, develop, and ultimately provide the necessary technologies to meet the goals of the VSE. This book, a review of the ETDP, is broadly supportive of the intent and goals of the VSE, and finds the ETDP is making progress towards the stated goals of technology development. However, the ETDP is operating within significant constraints which limit its ability to successfully accomplish those goals-the still dynamic nature of the Constellation Program requirements, the constraints imposed by a limited budget, the aggressive time scale of early technology deliverables, and the desire to fully employ the NASA workforce.




Advanced Technology for America's Future in Space


Book Description

In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations. Unspecified Center BUDGETING; FEDERAL BUDGETS; FINANCIAL MANAGEMENT; MISSION PLANNING; NASA SPACE PROGRAMS; PROJECT MANAGEMENT; RESEARCH AND DEVELOPMENT; RESEARCH PROJECTS; REVIEWING; TECHNOLOGY ASSESSMENT; AEROSPACE ENGINEERING; AEROSPACE SYSTEMS; SPACE EXPLORATION...




Recapturing NASA's Aeronautics Flight Research Capabilities


Book Description

In the five decades since NASA was created, the agency has sustained its legacy from the National Advisory Committee on Aeronautics (NACA) in playing a major role in U.S. aeronautics research and has contributed substantially to United States preeminence in civil and military aviation. This preeminence has contributed significantly to the overall economy and balance of trade of the United States through the sales of aircraft throughout the world. NASA's contributions have included advanced flight control systems, de-icing devices, thrust-vectoring systems, wing fuselage drag reduction configurations, aircraft noise reduction, advanced transonic airfoil and winglet designs, and flight systems. Each of these contributions was successfully demonstrated through NASA flight research programs. Equally important, the aircraft industry would not have adopted these and similar advances without NASA flight demonstration on full-scale aircraft flying in an environment identical to that which the aircraft are to operate-in other words, flight research. Flight research is a tool, not a conclusion. It often informs simulation and modeling and wind tunnel testing. Aeronautics research does not follow a linear path from simulation to wind tunnels to flying an aircraft. The loss of flight research capabilities at NASA has therefore hindered the agency's ability to make progress throughout its aeronautics program by removing a primary tool for research. Recapturing NASA's Aeronautics Flight Research Capabilities discusses the motivation for NASA to pursue flight research, addressing the aspects of the committee's task such as identifying the challenges where research program success can be achieved most effectively through flight research. The report contains three case studies chosen to illustrate the state of NASA ARMD. These include the ERA program and the Fundamental Research Program's hypersonics and supersonics projects. Following these case studies, the report describes issues with the NASA ARMD organization and management and offers solutions. In addition, the chapter discusses current impediments to progress, including demonstrating relevancy to stakeholders, leadership, and the lack of focus relative to available resources. Recapturing NASA's Aeronautics Flight Research Capabilities concludes that the type and sophistication of flight research currently being conducted by NASA today is relatively low and that the agency's overall progress in aeronautics is severely constrained by its inability to actually advance its research projects to the flight research stage, a step that is vital to bridging the confidence gap. NASA has spent much effort protecting existing research projects conducted at low levels, but it has not been able to pursue most of these projects to the point where they actually produce anything useful. Without the ability to actually take flight, NASA's aeronautics research cannot progress, cannot make new discoveries, and cannot contribute to U.S. aerospace preeminence.