Cloud Computing in Ocean and Atmospheric Sciences


Book Description

Cloud Computing in Ocean and Atmospheric Sciences provides the latest information on this relatively new platform for scientific computing, which has great possibilities and challenges, including pricing and deployments costs and applications that are often presented as primarily business oriented. In addition, scientific users may be very familiar with these types of models and applications, but relatively unfamiliar with the intricacies of the hardware platforms they use. The book provides a range of practical examples of cloud applications that are written to be accessible to practitioners, researchers, and students in affiliated fields. By providing general information on the use of the cloud for oceanographic and atmospheric computing, as well as examples of specific applications, this book encourages and educates potential users of the cloud. The chapters provide an introduction to the practical aspects of deploying in the cloud, also providing examples of workflows and techniques that can be reused in new projects. - Provides real examples that help new users quickly understand the cloud and provide guidance for new projects - Presents proof of the usability of the techniques and a clear path to adoption of the techniques by other researchers - Includes real research and development examples - that are ideal for cloud computing adopters in ocean and atmospheric domains







Climate Analysis


Book Description

Explains how climatologists have come to understand current climate variability and trends through analysis of observations, datasets and models.




An Introduction to Atmospheric Physics


Book Description

Contributor biographical information for An introduction to atmospheric physics / David G. Andrews. Bibliographic record and links to related information available from the Library of Congress catalog Biographical text provided by the publisher (may be incomplete or contain other coding). The Library of Congress makes no claims as to the accuracy of the information provided, and will not maintain or otherwise edit/update the information supplied by the publisher. -- -- David Andrews has been a lecturer in Physics at Oxford University and a Physics tutor at Lady Margaret Hall, Oxford, for 20 years. During this time he has had extensive experience of teaching a wide range of physics courses, including atmospheric physics. This experience has included giving lectures to large student audiences and also giving tutorials to small groups. Tutorials, in particular, have given him insights into the kinds of problems that physics students encounter when learning atmospheric physics, and the kinds of topics that excite them. His broad teaching experience has also helped him introduce students to connections between topics in atmospheric physics and related topics in other areas of physics. He feels that it is particularly important to expose today's physics students to the excitements and challenges presented by the atmosphere and climate. He has also published a graduate textbook, Middle Atmosphere Dynamics, with J.R. Holton and C.B. Leovy (1987, Academic Press). He is a Fellow of the Royal Meteorological Society, a Member of the Institute of Physics, and a Member of the American Meteorological Society.







Natural Climate Variability on Decade-to-Century Time Scales


Book Description

This volume reflects the current state of scientific knowledge about natural climate variability on decade-to-century time scales. It covers a wide range of relevant subjects, including the characteristics of the atmosphere and ocean environments as well as the methods used to describe and analyze them, such as proxy data and numerical models. They clearly demonstrate the range, persistence, and magnitude of climate variability as represented by many different indicators. Not only do natural climate variations have important socioeconomic effects, but they must be better understood before possible anthropogenic effects (from greenhouse gas emissions, for instance) can be evaluated. A topical essay introduces each of the disciplines represented, providing the nonscientist with a perspective on the field and linking the papers to the larger issues in climate research. In its conclusions section, the book evaluates progress in the different areas and makes recommendations for the direction and conduct of future climate research. This book, while consisting of technical papers, is also accessible to the interested layperson.




Statistics and Physical Oceanography


Book Description




Interacting Climates of Ocean Basins


Book Description

A comprehensive review of interactions between the climates of different ocean basins and their key contributions to global climate variability and change. Providing essential theory and discussing outstanding examples as well as impacts on monsoons, it a useful resource for graduate students and researchers in the atmospheric and ocean sciences.




Satellite Derived Global Ocean Product Validation/Evaluation


Book Description

Ocean satellite remote sensing plays important roles in the observations of physical, biological and biogeochemical features in inland, coastal, and global ocean waters, with high temporal and spatial resolution. The satellite-measured ocean products are used for near-real-time ocean monitoring and climate data records to understand short-/long-term variabilities in marine environments and ecosystems as well as for decision making tools to manage social, economic, and environmental benefits. Validation/evaluation including a combination of field measurements and inter-satellite comparison is an essential step in providing more accurate satellite-derived ocean products. In this Special Issue, 14 papers have been published and include research on validation/evaluation, retrieval algorithms of ocean geophysical and biogeochemical parameters, and application of the satellite ocean products in the regional and global ocean. Subjects treated include: Sea Surface Temperature; Sea Ice Surface Temperature from VIIRS thermal infrared sensor; Sea Ice Detection from Spectroradiometer; Sea Surface Winds from HY-2A Scatterometer and GNSS—Reflectometry; Wave Height from Sentinel-3A SAR; Retrievals of Sea Surface Salinity, Chlorophyll-a, Particulate Organic Carbon, Particulate Backscattering, Marine Fishery resource, and Submesoscale Eddies from multiple Ocean Colour sensors.




Recent Books