Bounded Symmetric Domains In Banach Spaces


Book Description

This timely book exposes succinctly recent advances in the geometric and analytic theory of bounded symmetric domains. A unique feature is the unified treatment of both finite and infinite dimensional symmetric domains, using Jordan theory in tandem with Lie theory. The highlights include a generalized Riemann mapping theorem, which realizes a bounded symmetric domain as the open unit ball of a complex Banach space with a Jordan structure. Far-reaching applications of this realization in complex geometry and function theory are discussed.This monograph is intended as a convenient reference for researchers and graduate students in geometric analysis, infinite dimensional holomorphy as well as functional analysis and operator theory.




Quantum Bounded Symmetric Domains


Book Description

Explores the basic theory of quantum bounded symmetric domains. The area became active in the late 1990s at a junction of noncommutative complex analysis and extensively developing theory of quantum groups. In a surprising advance of the theory of quantum bounded symmetric domains, it turned out that many classical problems admit elegant quantum analogs. Some of those are expounded in the book.




Hyperbolic Manifolds And Holomorphic Mappings: An Introduction (Second Edition)


Book Description

The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections “invariant metrics and pseudo-distances” and “hyperbolic complex manifolds” within the section “holomorphic mappings”. The invariant distance introduced in the first edition is now called the “Kobayashi distance”, and the hyperbolicity in the sense of this book is called the “Kobayashi hyperbolicity” to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.




Lie Groups Beyond an Introduction


Book Description

Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups.




Introductory Lectures on Automorphic Forms


Book Description

Intended as an introductory guide, this work takes for its subject complex, analytic, automorphic forms and functions on (a domain equivalent to) a bounded domain in a finite-dimensional, complex, vector space, usually denoted Cn). Part I, essentially elementary, deals with complex analytic automorphic forms on a bounded domain; it presents H. Cartan's proof of the existence of the projective imbedding of the compact quotient of such a domain by a discrete group. Part II treats the construction and properties of automorphic forms with respect to an arithmetic group acting on a bounded symmetric domain; this part is highly technical, and based largely on relevant results in functional analysis due to Godement and Harish-Chandra. In Part III, Professor Baily extends the discussion to include some special topics, specifically, the arithmetic propertics of Eisenstein series and their connection with the arithmetic theory of quadratic forms. Unlike classical works on the subject, this book deals with more than one variable, and it differs notably in its treatment of analysis on the group of automorphisms of the domain. It is concerned with the case of complex analytic automorphic forms because of their connection with algebraic geometry, and so is distinct from other modern treatises that deal with automorphic forms on a semi-simple Lie group. Having had its inception as graduate- level lectures, the book assumes some knowledge of complex function theory and algebra, for the serious reader is expected to supply certain details for himself, especially in such related areas as functional analysis and algebraic groups. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Representation Theory and Harmonic Analysis on Symmetric Spaces


Book Description

This volume contains the proceedings of the AMS Special Session on Harmonic Analysis, in honor of Gestur Ólafsson's 65th birthday, held on January 4, 2017, in Atlanta, Georgia. The articles in this volume provide fresh perspectives on many different directions within harmonic analysis, highlighting the connections between harmonic analysis and the areas of integral geometry, complex analysis, operator algebras, Lie algebras, special functions, and differential operators. The breadth of contributions highlights the diversity of current research in harmonic analysis and shows that it continues to be a vibrant and fruitful field of inquiry.




The Madison Symposium on Complex Analysis


Book Description

This volume contains the proceedings of a Symposium on Complex Analysis, held at the University of Wisconsin at Madison in June 1991 on the occasion of the retirement of Walter Rudin. During the week of the conference, a group of about two hundred mathematicians from many nations gathered to discuss recent developments in complex analysis and to celebrate Rudin's long and productive career. Among the main subjects covered are applications of complex analysis to operator theory, polynomial convexity, holomorphic mappings, boundary behaviour of holomorphic functions, function theory on the unit disk and ball, and some aspects of the theory of partial differential equations related to complex analysis. Containing papers by some of the world's leading experts in these subjects, this book reports on current directions in complex analysis and presents an excellent mixture of the analytic and geometric aspects of the theory.




Jordan Triple Systems in Complex and Functional Analysis


Book Description

This book is a systematic account of the impressive developments in the theory of symmetric manifolds achieved over the past 50 years. It contains detailed and friendly, but rigorous, proofs of the key results in the theory. Milestones are the study of the group of holomomorphic automorphisms of bounded domains in a complex Banach space (Vigué and Upmeier in the late 1970s), Kaup's theorem on the equivalence of the categories of symmetric Banach manifolds and that of hermitian Jordan triple systems, and the culminating point in the process: the Riemann mapping theorem for complex Banach spaces (Kaup, 1982). This led to the introduction of wide classes of Banach spaces known as JB∗-triples and JBW∗-triples whose geometry has been thoroughly studied by several outstanding mathematicians in the late 1980s. The book presents a good example of fruitful interaction between different branches of mathematics, making it attractive for mathematicians interested in various fields such as algebra, differential geometry and, of course, complex and functional analysis.




Advances in Real and Complex Analysis with Applications


Book Description

This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan’s mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22–26 August 2016. The book is a valuable resource for researchers in real and complex analysis.




Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32


Book Description

The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.