An Introduction to Branching Measure-Valued Processes


Book Description

For about half a century, two classes of stochastic processes---Gaussian processes and processes with independent increments---have played an important role in the development of stochastic analysis and its applications. During the last decade, a third class---branching measure-valued (BMV) processes---has also been the subject of much research. A common feature of all three classes is that their finite-dimensional distributions are infinitely divisible, allowing the use of the powerful analytic tool of Laplace (or Fourier) transforms. All three classes, in an infinite-dimensional setting, provide means for study of physical systems with infinitely many degrees of freedom. This is the first monograph devoted to the theory of BMV processes. Dynkin first constructs a large class of BMV processes, called superprocesses, by passing to the limit from branching particle systems. Then he proves that, under certain restrictions, a general BMV process is a superprocess. A special chapter is devoted to the connections between superprocesses and a class of nonlinear partial differential equations recently discovered by Dynkin.




Measure-Valued Branching Markov Processes


Book Description

Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.




Measure-Valued Branching Markov Processes


Book Description

This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.







Spatial Branching Processes, Random Snakes and Partial Differential Equations


Book Description

This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.




An Introduction to Superprocesses


Book Description

Over the past 20 years, the study of superprocesses has expanded into a major industry and can now be regarded as a central theme in modern probability theory. This book is intended as a rapid introduction to the subject, geared toward graduate students and researchers in stochastic analysis. A variety of different approaches to the superprocesses emerged over the last ten years. Yet no one approach superseded any others. In this book, readers are exposed to a number of different ways of thinking about the processes, and each is used to motivate some key results. The emphasis is on why results are true rather than on rigorous proof. Specific results are given, including extensive references to current literature for their general form.




Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems


Book Description

The papers in this collection explore the connections between the rapidly developing fields of measure-valued processes, stochastic partial differential equations, and interacting particle systems, each of which has undergone profound development in recent years. Bringing together ideas and tools arising from these different sources, the papers include contributions to major directions of research in these fields, explore the interface between them, and describe newly developing research problems and methodologies. Several papers are devoted to different aspects of measure-valued branching processes (also called superprocesses). Some new classes of these processes are described, including branching in catalytic media, branching with change of mass, and multilevel branching. Sample path and spatial clumping properties of superprocesses are also studied. The papers on Fleming-Viot processes arising in population genetics include discussions of the role of genealogical structures and the application of the Dirichlet form methodology. Several papers are devoted to particle systems studied in statistical physics and to stochastic partial differential equations which arise as hydrodynamic limits of such systems. With overview articles on some of the important new developments in these areas, this book would be an ideal source for an advanced graduate course on superprocesses.




Classical and Modern Branching Processes


Book Description

This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as part of the IMA year on Emerging Appli cations of Probability. The organizers of the year long program identified branching processes as one of the active areas in which a workshop should be held. Krish na B. Athreya and Peter Jagers were asked to organize this. The topics covered by the workshop could broadly be divided into the following areas: 1. Tree structures and branching processes; 2. Branching random walks; 3. Measure valued branching processes; 4. Branching with dependence; 5. Large deviations in branching processes; 6. Classical branching processes.




The Dynkin Festschrift


Book Description

Onishchik, A. A. Kirillov, and E. B. Vinberg, who obtained their first results on Lie groups in Dynkin's seminar. At a later stage, the work of the seminar was greatly enriched by the active participation of 1. 1. Pyatetskii Shapiro. As already noted, Dynkin started to work in probability as far back as his undergraduate studies. In fact, his first published paper deals with a problem arising in Markov chain theory. The most significant among his earliest probabilistic results concern sufficient statistics. In [15] and [17], Dynkin described all families of one-dimensional probability distributions admitting non-trivial sufficient statistics. These papers have considerably influenced the subsequent research in this field. But Dynkin's most famous results in probability concern the theory of Markov processes. Following Kolmogorov, Feller, Doob and Ito, Dynkin opened a new chapter in the theory of Markov processes. He created the fundamental concept of a Markov process as a family of measures corresponding to var ious initial times and states and he defined time homogeneous processes in terms of the shift operators ()t. In a joint paper with his student A.




Non-autonomous Kato Classes and Feynman-Kac Propagators


Book Description

"This book provides an introduction to propagator theory. Propagators, or evolution families, are two-parameter analogues of semigroups of operators. Propagators are encountered in analysis, mathematical physics, partial differential equations, and probability theory. They are often used as mathematical models of systems evolving in a changing environment. A unifying theme of the book is the theory of Feynman-Kac propagators associated with time-dependent measures from non-autonomous Kato classes. In applications, a Feynman-Kac propagator describes the evolution of a physical system in the presence of time-dependent absorption and excitation. The book is suitable as an advanced textbook for graduate courses." "Readership: Graduate students and researchers in mathematical analysis, partial differential equations, and probability theory."--BOOK JACKET.