Introduction to Calculus and Analysis II/1


Book Description

From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991




Introduction to the Calculus of Variations


Book Description

Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.




Calculus: A Complete Introduction


Book Description

Calculus: A Complete Introduction is the most comprehensive yet easy-to-use introduction to using calculus. Written by a leading expert, this book will help you if you are studying for an important exam or essay, or if you simply want to improve your knowledge. The book covers all areas of calculus, including functions, gradients, rates of change, differentiation, exponential and logarithmic functions and integration. Everything you will need to know is here in one book. Each chapter includes not only an explanation of the knowledge and skills you need, but also worked examples and test questions.




Calculus on Manifolds


Book Description

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.




The Cartoon Introduction to Calculus


Book Description

The internationally bestselling authors of The Cartoon Introduction to Economics return to make calculus fun The award-winning illustrator Grady Klein has teamed up once again with the world’s only stand-up economist, Yoram Bauman, Ph.D., to take on the daunting subject of calculus. A supplement to traditional textbooks, The Cartoon Introduction to Calculus focuses on the big ideas rather than all the formulas you have to memorize. With Klein and Bauman as our guides, we scale the dual peaks of Mount Derivative and Mount Integral, and from their summits, we see how calculus relates to the rest of mathematics. Beginning with the problems of speed and area, Klein and Bauman show how the discipline is unified by a fundamental theorem. We meet geniuses like Archimedes, Liu Hui, and Bonaventura Cavalieri, who survived the slopes on intuition but prepared us for the avalanche-like dangers posed by mathematical rigor. Then we trek onward and scramble through limits and extreme values, optimization and integration, and learn how calculus can be applied to economics, physics, and so much more. We discover that calculus isn’t the pinnacle of mathematics after all, but its tools are foundational to everything that follows. Klein and Bauman round out the book with a handy glossary of symbols and terms, so you don’t have to worry about mixing up constants and constraints. With a witty and engaging narrative full of jokes and insights, The Cartoon Introduction to Calculus is an essential primer for students or for anyone who is curious about math.




A First Course in Calculus


Book Description

This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.




Introduction to Calculus and Classical Analysis


Book Description

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.




An Introduction to the Calculus of Variations


Book Description

Clear, rigorous introductory treatment covers applications to geometry, dynamics, and physics. It focuses upon problems with one independent variable, connecting abstract theory with its use in concrete problems. 1962 edition.




Calculus


Book Description

"Published by OpenStax College, Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 2 covers integration, differential equations, sequences and series, and parametric equations and polar coordinates."--BC Campus website.




Introduction to Stochastic Calculus with Applications


Book Description

This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.