An Introduction to Conditional Random Fields


Book Description

An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.




Gaussian Markov Random Fields


Book Description

Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie




Markov Random Field Modeling in Image Analysis


Book Description

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.




Hidden Conditional Random Fields for Speech Recognition


Book Description

This thesis investigates using a new graphical model, hidden conditional random fields (HCRFs), for speech recognition. Conditional random fields (CRFs) are discriminative sequence models that have been successfully applied to several tasks in text processing, such as named entity recognition. Recently, there has been increasing interest in applying CRFs to speech recognition due to the similarity between speech and text processing. HCRFs are CRFs augmented with hidden variables that are capable of representing the dynamic changes and variations in speech signals. HCRFs also have the ability to incorporate correlated features from both speech signals and text without making strong independence assumptions among them. This thesis presents my current research on applying HCRFs to speech recognition and HCRFs' potential to replace the current hidden Markov model (HMM) for acoustic modeling. Experimental results of phone classification, phone recognition, and speaker adaptation are presented and discussed. Our monophone HCRFs outperform both maximum mutual information estimation (MMIE) and minimum phone error (MPE) trained HMMs and achieve the-start-of-the-art performance in TIMIT phone classification and recognition tasks. We also show how to jointly train acoustic models and language models in HCRFs, which shows improvement in the results. Maximum a posterior (MAP) and maximum conditional likelihood linear regression (MCLLR) successfully adapt speaker-independent models to speaker-dependent models with a small amount of adaptation data for HCRF speaker adaptation. Finally, we explore adding gender and dialect features for phone recognition, and experimental results are presented.




Advances in Information and Communication


Book Description

This book presents high-quality research on the concepts and developments in the field of information and communication technologies, and their applications. It features 134 rigorously selected papers (including 10 poster papers) from the Future of Information and Communication Conference 2020 (FICC 2020), held in San Francisco, USA, from March 5 to 6, 2020, addressing state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of future research. Discussing various aspects of communication, data science, ambient intelligence, networking, computing, security and Internet of Things, the book offers researchers, scientists, industrial engineers and students valuable insights into the current research and next generation information science and communication technologies.




Image Textures and Gibbs Random Fields


Book Description

This text presents techniques for describing image textures. Contrary to the usual practice of embedding the images to known modelling frameworks borrowed from statistical physics or other domains, this book deduces the Gibbs models from basic image features and tailors the modelling framework to the images. This approach results in more general Gibbs models than can be either Markovian or non-Markovian and possess arbitrary interaction structures and strengths. The book presents computationally feasible algorithms for parameter estimation and image simulation and demonstrates their abilities and limitations by numerous experimental results.




Data Science: From Research to Application


Book Description

This book presents outstanding theoretical and practical findings in data science and associated interdisciplinary areas. Its main goal is to explore how data science research can revolutionize society and industries in a positive way, drawing on pure research to do so. The topics covered range from pure data science to fake news detection, as well as Internet of Things in the context of Industry 4.0. Data science is a rapidly growing field and, as a profession, incorporates a wide variety of areas, from statistics, mathematics and machine learning, to applied big data analytics. According to Forbes magazine, “Data Science” was listed as LinkedIn’s fastest-growing job in 2017. This book presents selected papers from the International Conference on Contemporary Issues in Data Science (CiDaS 2019), a professional data science event that provided a real workshop (not “listen-shop”) where scientists and scholars had the chance to share ideas, form new collaborations, and brainstorm on major challenges; and where industry experts could catch up on emerging solutions to help solve their concrete data science problems. Given its scope, the book will benefit not only data scientists and scientists from other domains, but also industry experts, policymakers and politicians.




Markov Random Fields and Their Applications


Book Description

The study of Markov random fields has brought exciting new problems to probability theory which are being developed in parallel with basic investigation in other disciplines, most notably physics. The mathematical and physical literature is often quite technical. This book aims at a more gentle introduction to these new areas of research.




Random Fields and Geometry


Book Description

This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.




Machine Learning


Book Description

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.