High Temperature Gas Dynamics


Book Description

High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques. This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a section on stability of 2D ionized gas flow, and additional practical examples, such as MGD generators, Hall and ion thrusters, and Faraday generators.




High Temperature Gas Dynamics


Book Description

A class-tested primer for students, scientists and engineers who would like to have a basic understanding of the physics and the behaviour of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer.




Radiation Gas Dynamics


Book Description

When the temperature of a gas is not too high and the density of a gas is not too low, the transfer of heat by radiation is usually negligibly small in comparison with that by conduction and convection. However, in the hypersonic flow of space flight, particularly in the re-entry of a space vehicle, and in the flow problem involving nuclear reaction such as in the blast wave of nuclear bomb or in the peaceful use of the controlled fusion reaction, the temperature of the gas may be very high and the density of the gas may be very low. As a result, thermal radiation becomes a very important mode of heat transfer. A complete analysis of such high temperature flow fields should be based upon a study of the gasdynamic field and the radiation field simultaneously. Hence during the last few years, considerable efforts have been made to study such interaction problems between gasdynamic field and radiation field and a new title, Radiation Gasdynamics, has been suggested for this subject. Even though radiative transfer has been studied for a long time by astro physicists, the interaction between the radiation field and the gadsynamic field has been only extensively studied recently.




Hypersonic and High Temperature Gas Dynamics


Book Description

This book is a self-contained text for those students and readers interested in learning hypersonic flow and high-temperature gas dynamics. It assumes no prior familiarity with either subject on the part of the reader. If you have never studied hypersonic and/or high-temperature gas dynamics before, and if you have never worked extensively in the area, then this book is for you. On the other hand, if you have worked and/or are working in these areas, and you want a cohesive presentation of the fundamentals, a development of important theory and techniques, a discussion of the salient results with emphasis on the physical aspects, and a presentation of modern thinking in these areas, then this book is also for you. In other words, this book is designed for two roles: 1) as an effective classroom text that can be used with ease by the instructor, and understood with ease by the student; and 2) as a viable, professional working tool for engineers, scientists, and managers who have any contact in their jobs with hypersonic and/or high-temperature flow.




The High Temperature Aspects of Hypersonic Flow


Book Description

The High Temperature Aspects of Hypersonic Flow is a record of the proceedings of the AGARD-NATO Specialists' Meeting, held at the Technical Centre for Experimental Aerodynamics, Rhode-Saint-Genese, Belgium in April 1962. The book contains the papers presented during the meeting that tackled a broad range of topics in the aspects of hypersonic flow. The subjects covered during the meeting include pressure measurements, interference effects, the use of wind tunnels in aircraft development testing, high temperature gas characteristics, boundary layer research, stability and control and the use of rocket vehicles in flight research. Aerospace engineers and aeronautical engineers will find the book invaluable.




Parallel Computing is Everywhere


Book Description

The most powerful computers work by harnessing the combined computational power of millions of processors, and exploiting the full potential of such large-scale systems is something which becomes more difficult with each succeeding generation of parallel computers. Alternative architectures and computer paradigms are increasingly being investigated in an attempt to address these difficulties. Added to this, the pervasive presence of heterogeneous and parallel devices in consumer products such as mobile phones, tablets, personal computers and servers also demands efficient programming environments and applications aimed at small-scale parallel systems as opposed to large-scale supercomputers. This book presents a selection of papers presented at the conference: Parallel Computing (ParCo2017), held in Bologna, Italy, on 12 to 15 September 2017. The conference included contributions about alternative approaches to achieving High Performance Computing (HPC) to potentially surpass exa- and zetascale performances, as well as papers on the application of quantum computers and FPGA processors. These developments are aimed at making available systems better capable of solving intensive computational scientific/engineering problems such as climate models, security applications and classic NP-problems, some of which cannot currently be managed by even the most powerful supercomputers available. New areas of application, such as robotics, AI and learning systems, data science, the Internet of Things (IoT), and in-car systems and autonomous vehicles were also covered. As always, ParCo2017 attracted a large number of notable contributions covering present and future developments in parallel computing, and the book will be of interest to all those working in the field.







Parallel Computational Fluid Dynamics 2005


Book Description

The proceedings from Parallel CFD 2005 covering all aspects of the theory and applications of parallel computational fluid dynamics from the traditional to the more contemporary issues.- Report on current research in the field in an area which is rapidly changing- Subject is important to all interested in solving large fluid dynamics problems- Interdisciplinary activity. Contributions include scientists with a variety of backgrounds