An Introduction to Incidence Geometry


Book Description

This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end of the book. This book is aimed at graduate students and researchers in the fields of combinatorics and incidence geometry.




Foundations of Incidence Geometry


Book Description

Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.




Handbook of Incidence Geometry


Book Description

Hardbound. This Handbook deals with the foundations of incidence geometry, in relationship with division rings, rings, algebras, lattices, groups, topology, graphs, logic and its autonomous development from various viewpoints. Projective and affine geometry are covered in various ways. Major classes of rank 2 geometries such as generalized polygons and partial geometries are surveyed extensively.More than half of the book is devoted to buildings at various levels of generality, including a detailed and original introduction to the subject, a broad study of characterizations in terms of points and lines, applications to algebraic groups, extensions to topological geometry, a survey of results on diagram geometries and nearby generalizations such as matroids.




Projective Geometry


Book Description

This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinatising a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.




Polynomial Methods and Incidence Theory


Book Description

A thorough yet accessible introduction to the mathematical breakthroughs achieved by using new polynomial methods in the past decade.




Foundations of Geometry


Book Description

In Part One of this comprehensive and frequently cited treatment, the authors develop Euclidean and Bolyai-Lobachevskian geometry on the basis of an axiom system due, in principle, to the work of David Hilbert. Part Two develops projective geometry in much the same way. An Introduction provides background on topological space, analytic geometry, and other relevant topics, and rigorous proofs appear throughout the text. Topics covered by Part One include axioms of incidence and order, axioms of congruence, the axiom of continuity, models of absolute geometry, and Euclidean geometry, culminating in the treatment of Bolyai-Lobachevskian geometry. Part Two examines axioms of incidents and order and the axiom of continuity, concluding with an exploration of models of projective geometry.




Points and Lines


Book Description

The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions.




Perspectives on Projective Geometry


Book Description

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.




Projective Geometry


Book Description

Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.




Computational Geometry


Book Description

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2