An Introduction to Population Genetics Theory


Book Description

This text book, originally published in 1970, presents the field of population genetics, starting with elementary concepts and leading the reader well into the field. It is concerned mainly with population genetics in a strict sense and deals primarily with natural populations and less fully with the rather similar problems that arise in breading live stock and cul t i vat ed plans . The emphasis is on the behavior of genes and population attributes under natural selection where the most important measure is Darwinian fitness. This text is intended for graduatestudents and advanced undergraduates in genetics and population biology. This book steers a middle course between completely verbal biological arguments and the rigor of the mathematician. The first two-thirds of the book do not require advanced mathematical background. An ordinary knowledge of calculus will suffice. The latter parts of the book, which deal with population stochastically, use more advanced methods.




An Introduction to Population Genetics


Book Description

This book covers both classical population genetics theory developed in terms of allele and haplotype frequencies and modern population genetics theory developed in terms of coalescent theory. It features applications of theory to problems that arise in the study of human and other populations and assumes little prior knowledge of mathematics.




Introduction to Theoretical Population Genetics


Book Description

This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).







Introduction to Population Genetics


Book Description

Making the theory of population genetics relevant to readers, this book explains the related mathematics with a logical organization. It presents the quantitative aspects of population genetics, and employs examples of human genetics, medical evolution, human evolution, and endangered species. For an introduction to, and understanding of, population genetics.













Population Genetics and Microevolutionary Theory


Book Description

The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links




Mathematical Population Genetics 1


Book Description

This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.