An Introduction to Radiative Transfer


Book Description

This 2001 book presents the methodologies used by astrophysicists for solving the radiative transfer equation.




Radiative Transfer


Book Description

This book by a Nobel Laureate provides the foundation for analysis of stellar atmospheres, planetary illumination, and sky radiation. Suitable for students and professionals in physics, nuclear physics, astrophysics, and atmospheric studies. 1950 edition.




An Introduction to Atmospheric Radiation


Book Description

An Introduction to Atmospheric Radiation




An Introduction to Atmospheric Radiation


Book Description

Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.




Radiative Processes in Astrophysics


Book Description

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.




Radiative Transfer in the Atmosphere and Ocean


Book Description

Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.




Theory of Atmospheric Radiative Transfer


Book Description

Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.




Radiative Transfer


Book Description

This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener–Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.




A First Course in Atmospheric Radiation


Book Description

This textbook covers the essentials of atmospheric radiation at a level appropriate to advanced undergraduates and first-year graduate students. It was written specifically to be readable and technically accessible to students having no prior background in the subject area and who may or may not intend to continue with more advanced study of radiation or remote sensing. The author emphasizes physical insight, first and foremost, but backed by the essential mathematical relationships. The second edition adds new exercises, improved figures, a table of symbols, and discussions of new topics, such as the Poynting vector and the energy balance within the atmosphere. The book web page includes additional resources for courses taught using this book, including downloadable/printable PDF figures as well as solutions to most problems (for instructors of recognized courses only).




Remote Sensing of Coastal Aquatic Environments


Book Description

This book provides extensive insight on remote sensing of coastal waters from aircraft and space-based platforms. The primary focus of the book is optical remote sensing using passive instruments, to measure and analyze the coastal aquatic environment. The authors have gathered information from a variety of sources, to help non-specialists grasp new techniques and technology, to quickly produce useful data