An Introduction to Resilient Microgrid Electrical Distribution Systems for Professional Engineers


Book Description

Introductory technical guidance for professional engineers interested in resilient microgrid electric power distribution systems. Here is what is discussed: 1. INTRODUCTION, 2. TECHNICAL REQUIREMENTS, 3. PERFORMANCE METRICS, 4. PLANNING, DESIGN AND ACQUISITION.




DC Distribution Systems and Microgrids


Book Description

DC electric power distribution systems have higher efficiency, better current carrying capacity and faster response when compared to conventional AC systems. They also provide a more natural interface with many types of renewable energy sources. Furthermore, there are fewer issues with reactive power flow, power quality and frequency regulation, resulting in a notably less complex control system. All these facts lead to increased applications of DC systems in modern power systems. Still, design and operation of these systems imposes a number of specific challenges, mostly related to lack of mature protection technology and operational experience, as well as very early development stage of standards regarding DC based power infrastructure.




Enhancing the Resilience of the Nation's Electricity System


Book Description

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.




Networked Microgrids


Book Description

Discover scalable, dependable, intelligent solutions for integrating complex networked microgrids with this definitive guide. Combining resilient control, fast programmable networking, reachability analysis, and cyber-physical security, this is essential reading for researchers, professional engineers, and graduate students.




Handbook of Research on New Solutions and Technologies in Electrical Distribution Networks


Book Description

As the electrical industry continues to develop, one sector that still faces a range of concerns is the electrical distribution system. Excessive industrialization and inadequate billing are just a few issues that have plagued this electrical sector as it advances into the smart grid environment. Research is necessary to explore the possible solutions in fixing these problems and developing the distribution sector into an active and smart system. The Handbook of Research on New Solutions and Technologies in Electrical Distribution Networks is a collection of innovative research on the methods and applications of solving major issues within the electrical distribution system. Some issues covered within the publication include distribution losses, improper monitoring of system, renewable energy integration with micro-grid and distributed energy sources, and smart home energy management system modelling. This book is ideally designed for power engineers, electrical engineers, energy professionals, developers, technologists, policymakers, researchers, academicians, industry professionals, and students seeking current research on improving this key sector of the electrical industry.




Smart Power Distribution Systems


Book Description

Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way




Research Anthology on Smart Grid and Microgrid Development


Book Description

"This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world"--




Networked Microgrids


Book Description

Discover scalable, dependable, and intelligent solutions to the challenges of integrating complex networked microgrids with this definitive guide to the development of cutting-edge power and data systems. Includes advanced fault management control and optimization to enable enhanced microgrid penetration without compromising reliability. Features SDN-based architectures and techniques to enable secure, reliable and fault-tolerant algorithms for resilient networked systems. Provides reachability techniques to facilitate a deeper understanding of microgrid resilience in areas with high penetration of renewables. Combining resilient control, fast programmable networking, reachability analysis, and cyber-physical security, this is essential reading for researchers, professional engineers, and graduate students interested in creating the next generation of data-intensive self-configurable networked microgrid systems, smart communities, and smart infrastructure.




Electric Power Systems Resiliency


Book Description

Electric Power Systems Resiliency: Modelling, Opportunity and Challenges considers current strengths and weaknesses of various applications and provides engineers with different dimensions of flexible applications to illustrate their use in the solution of power system improvement. Detailing advanced methodologies to improve resiliency and describing resilient-oriented power system protection and control techniques, this reference offers a deep study on the electrical power system through the lens of resiliency that ultimately provides a flexible framework for cost-benefit analysis to improve power system durability. Aimed at researchers exploring the significance of smart monitoring, protecting and controlling of power systems, this book is useful for those working in the domain of power system control and protection (PSOP). - Features advanced methodologies for improving electrical power system resiliency for different architectures, e.g., smart grid, microgrid and macro grid - Discusses resiliency in power generation, transmission and distribution comprehensively throughout - Includes case studies that illustrate the applications of resilience in power systems




Microgrids


Book Description

Microgrids are the most innovative area in the electric power industry today. Future microgrids could exist as energy-balanced cells within existing power distribution grids or stand-alone power networks within small communities. A definitive presentation on all aspects of microgrids, this text examines the operation of microgrids – their control concepts and advanced architectures including multi-microgrids. It takes a logical approach to overview the purpose and the technical aspects of microgrids, discussing the social, economic and environmental benefits to power system operation. The book also presents microgrid design and control issues, including protection and explaining how to implement centralized and decentralized control strategies. Key features: original, state-of-the-art research material written by internationally respected contributors unique case studies demonstrating success stories from real-world pilot sites from Europe, the Americas, Japan and China examines market and regulatory settings for microgrids, and provides evaluation results under standard test conditions a look to the future – technical solutions to maximize the value of distributed energy along with the principles and criteria for developing commercial and regulatory frameworks for microgrids Offering broad yet balanced coverage, this volume is an entry point to this very topical area of power delivery for electric power engineers familiar with medium and low voltage distribution systems, utility operators in microgrids, power systems researchers and academics. It is also a useful reference for system planners and operators, manufacturers and network operators, government regulators, and postgraduate power systems students. CONTRIBUTORS Thomas Degner Aris Dimeas Alfred Engler Nuno Gil Asier Gil de Muro Guillermo Jiménez-Estévez George Kariniotakis George Korres André Madureira Meiqin Mao Chris Marnay Jose Miguel Yarza Satoshi Morozumi Alexander Oudalov Frank van Overbeeke Rodrigo Palma Behnke Joao Abel Pecas Lopes Fernanda Resende John Romankiewicz Christine Schwaegerl Nikos Soultanis Liang Tao Antonis Tsikalakis