Steam Surface Condensers


Book Description

This volume is a comprehensive presentation of analytical theory and real-world practical solutions. It clearly illustrates updated approaches that plant managers and performance engineers can use in judging condenser performance and in making maintenance decisions. The author examines current methods for modeling, diagnosing and improving condenser performance. He describes how to calculate heat transfer coefficients, provides details of the recent ASME Power Test Code PTC 12.2-1998, and explains the significance of heat transfer coefficients in measuring the overall performance of an operating condenser. Further discussion includes condenser cleaning schedules that save money and reduce CO2 emissions, diagnostic methods that help unit operators pinpoint problem areas, monitoring techniques that help predict the onset of tube fouling and deposit accumulation, and proper methods of tube plugging. New topic areas are also explored: assigning a dollar amount and excess carbon emissions to condenser fouling; methods for estimating cooling water flow rate;and performance analysis for multicompartment condensers.







Power Plant Instrumentation and Control Handbook


Book Description

Power Plant Instrumentation and Control Handbook, Second Edition, provides a contemporary resource on the practical monitoring of power plant operation, with a focus on efficiency, reliability, accuracy, cost and safety. It includes comprehensive listings of operating values and ranges of parameters for temperature, pressure, flow and levels of both conventional thermal power plant and combined/cogen plants, supercritical plants and once-through boilers. It is updated to include tables, charts and figures from advanced plants in operation or pilot stage. Practicing engineers, freshers, advanced students and researchers will benefit from discussions on advanced instrumentation with specific reference to thermal power generation and operations. New topics in this updated edition include plant safety lifecycles and safety integrity levels, advanced ultra-supercritical plants with advanced firing systems and associated auxiliaries, integrated gasification combined cycle (IGCC) and integrated gasification fuel cells (IGFC), advanced control systems, and safety lifecycle and safety integrated systems. - Covers systems in use in a wide range of power plants: conventional thermal power plants, combined/cogen plants, supercritical plants, and once through boilers - Presents practical design aspects and current trends in instrumentation - Discusses why and how to change control strategies when systems are updated/changed - Provides instrumentation selection techniques based on operating parameters. Spec sheets are included for each type of instrument - Consistent with current professional practice in North America, Europe, and India - All-new coverage of Plant safety lifecycles and Safety Integrity Levels - Discusses control and instrumentation systems deployed for the next generation of A-USC and IGCC plants




Steam Plant Operation, 10th Edition


Book Description

The definitive reference on the role of steam in the production and operation of power plants for electric generation and industrial process applications For more than 80 years, Steam Plant Operation has been an unmatched source of information on steam power plants, including design, operation, and maintenance. The Tenth Edition emphasizes the importance of devising a comprehensive energy plan utilizing all economical sources of energy, including fossil fuels, nuclear power, and renewable energy sources. This trusted classic discusses the important role that steam plays in our power production and identifies the associated risks and potential problems of other energy sources. You will find concise explanations of key concepts, from fundamentals through design and operation. For energy students, Steam Plant Operation provides a solid introduction to steam power plant technology. This practical guide includes common power plant calculations such as plant heat rate, boiler efficiency, pump performance, combustion processes, and explains the systems necessary to control plant emissions. Numerous illustrations and clear presentation of the material will prove invaluable for those preparing for an operator’s license exam. Examples throughout show real-world application of the topics discussed. COVERAGE INCLUDES: • Steam and Its Importance • Boilers • Design and Construction of Boilers • Combustion of Fuels • Boiler Settings, Combustion Systems, and Auxiliary Equipment • Boiler Accessories • Operation and Maintenance of Boilers • Pumps • Steam Turbines, Condensers, and Cooling Towers • Operating and Maintaining Steam Turbines, Condensers, Cooling Towers, and Auxiliaries • Auxiliary Steam Plant Equipment • Environmental Control Systems • Waste-to-Energy Plants




Advances in Steam Turbines for Modern Power Plants


Book Description

Advances in Steam Turbines for Modern Power Plants provides an authoritative review of steam turbine design optimization, analysis and measurement, the development of steam turbine blades, and other critical components, including turbine retrofitting and steam turbines for renewable power plants. As a very large proportion of the world's electricity is currently generated in systems driven by steam turbines, (and will most likely remain the case in the future) with steam turbines operating in fossil-fuel, cogeneration, combined cycle, integrated gasification combined cycle, geothermal, solar thermal, and nuclear plants across the world, this book provides a comprehensive assessment of the research and work that has been completed over the past decades. - Presents an in-depth review on steam turbine design optimization, analysis, and measurement - Written by a range of experts in the area - Provides an overview of turbine retrofitting and advanced applications in power generation




Troubleshooting Vacuum Systems


Book Description

Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor. Also, the existing texts fail to consider the interaction of the vacuum system with the process equipment it serves and the variability of the motive steam conditions, change in cooling water temperature condenser fouling and erosion of the ejectors. Here are some of the many questions answered in this groundbreaking volume: Why does my first stage jet make a surging sound during hot weather? Why does the vacuum suddenly break? I've seen moisture condensing on the jet's body! What’s causing that? Why do I have to steam-out the drain legs from our condensers? Superheated steam is making our vacuum worse. Is this normal? How can I locate and measure air leaks? Reducing the steam pressure to my jets improves vacuum. But why? I can't pull the pre-condenser bundle. The shell side is fouling. What should I do? We're not getting our normal horsepower from our steam turbine. Could this be a jet problem? Raising the seal drum level improves vacuum! Is there an explanation for this? Our turbine exhaust steam pressure to our surface condenser has doubled in the last two years. What should we do? Restricting cooling water flow from our elevated condensers improves vacuum! Is this possible? What's a converging-diverging ejector all about? What's the difference between a barometric condenser and a surface condenser? Which is better?




Unit Operations in Food Processing


Book Description

This long awaited second edition of a popular textbook has a simple and direct approach to the diversity and complexity of food processing. It explains the principles of operations and illustrates them by individual processes. The new edition has been enlarged to include sections on freezing, drying, psychrometry, and a completely new section on mechanical refrigeration. All the units have been converted to SI measure. Each chapter contains unworked examples to help the student gain a grasp of the subject, and although primarily intended for the student food technologist or process engineer, this book will also be useful to technical workers in the food industry




Thermal Engineering


Book Description




Watt's Perfect Engine


Book Description

Discusses the life of scientist James Watt, inventor of the separate-condenser steam engine, and focuses on re-discovering steam, types of steam engines, manufacturing and marketing a steam engine.




The Steam and Condensate Loop


Book Description