An Introduction to the Mathematical Theory of Vibrations of Elastic Plates


Book Description

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices.




Introduction To The Mathematical Theory Of Vibrations Of Elastic Plates, An - By R D Mindlin


Book Description

This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices.




Vibrations of Elastic Plates


Book Description

This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.







Wave Motion in Elastic Solids


Book Description

Self-contained coverage of topics ranging from elementary theory of waves and vibrations in strings to three-dimensional theory of waves in thick plates. Over 100 problems.




R.D. Mindlin and Applied Mechanics


Book Description

R. D. Mindlin and Applied Mechanics is a collection of studies in the development of Applied Mechanics dedicated to Professor Raymond D. Mindlin by his former students. This book contains the development of specific areas of Mechanics of Solids to which Mindlin has contributed most. Organized into eight chapters, this text first discusses the past, present and likely future of photoelasticity. Subsequent chapters explore the development of the three-dimensional theory of elasticity; generalized elastic continua; bodies in contact with applications to granular media; and waves and vibrations in isotropic and anisotropic plates. Other chapters discuss the vibrations and wave propagation in rods, piezoelectric crystals, and electro-elasticity. Lastly, the lattice theories and continuum mechanics are described.




The History of the Theory of Structures


Book Description

This book traces the evolution of theory of structures and strength of materials - the development of the geometrical thinking of the Renaissance to become the fundamental engineering science discipline rooted in classical mechanics. Starting with the strength experiments of Leonardo da Vinci and Galileo, the author examines the emergence of individual structural analysis methods and their formation into theory of structures in the 19th century. For the first time, a book of this kind outlines the development from classical theory of structures to the structural mechanics and computational mechanics of the 20th century. In doing so, the author has managed to bring alive the differences between the players with respect to their engineering and scientific profiles and personalities, and to create an understanding for the social context. Brief insights into common methods of analysis, backed up by historical details, help the reader gain an understanding of the history of structural mechanics from the standpoint of modern engineering practice. A total of 175 brief biographies of important personalities in civil and structural engineering as well as structural mechanics plus an extensive bibliography round off this work.




Applied Wave Mathematics II


Book Description

This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.







Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells


Book Description

This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.