An Introductory Guide to Scientific Visualization


Book Description

Scientific visualization is concerned with exploring data and information insuch a way as to gain understanding and insight into the data. This is a fundamental objective of much scientific investigation. To achieve this goal, scientific visualization utilises aspects in the areas of computergraphics, user-interface methodology, image processing, system design, and signal processing. This volume is intended for readers new to the field and who require a quick and easy-to-read summary of what scientific visualization is and what it can do. Written in a popular andjournalistic style with many illustrations it will enable readers to appreciate the benefits of scientific visualization and how current tools can be exploited in many application areas. This volume is indispensible for scientists and research workers who have never used computer graphics or other visual tools before, and who wish to find out the benefitsand advantages of the new approaches.




Scientific Visualization


Book Description

Background A group of UKexperts on Scientific Visualization and its associated applications gathered at The Cosener's House in Abingdon, Oxford shire (UK) in February 1991 to consider all aspects of scientific visualization and to produce a number of documents: • a detailed summary of current knowledge, techniques and appli cations in the field (this book); • an Introductory Guide to Visualization that could be widely dis tributed to the UK academic community as an encouragement to use visualization techniques and tools in their work; • a Management Report (to the UK Advisory Group On Computer Graphics - AGOCG) documenting the principal results of the workshop and making recommendations as appropriate. This book proposes a framework through which scientific visualiza tion systems may be understood and their capabilities described. It then provides overviews of the techniques, data facilities and human-computer interface that are required in a scientific visualiza tion system. The ways in which scientific visualization has been applied to a wide range of applications is reviewed and the available products that are scientific visualization systems or contribute to sci entific visualization systems are described. The book is completed by a comprehensive bibliography of literature relevant to scientific visualization and a glossary of terms. VI Scientific Visualization Acknowledgements This book was predominantly written during the workshop in Abingdon. The participants started from an "input document" pro duced by Ken Brodlie, Lesley Ann Carpenter, Rae Earnshaw, Julian Gallop (with Janet Haswell), Chris Osland and Peter Quarendon.




Data Visualization


Book Description

An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions




Visualize This


Book Description

Practical data design tips from a data visualization expert of the modern age Data doesn't decrease; it is ever-increasing and can be overwhelming to organize in a way that makes sense to its intended audience. Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships. Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.




Fundamentals of Data Visualization


Book Description

Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story




Introduction to Data Visualization and Storytelling


Book Description

An introduction to data visualization and data storytelling. This book explains (visually) the fundamental principles of a meaningful chart making at high level. No coding or statistics skills required. Audience: data visualization students, senior data scientists, prescriptive analytics consultants. Written by a design thinking professor and multiple-times awarded kaggle master, this book hits the sweet spot between abstraction and detail.




Introduction to Information Visualization


Book Description

Information Visualization is a relatively young field that is acquiring more and more concensus in both academic and industrial environments. 'Information Visualization' explores the use of computer-supported interactive graphical representations to explain data and amplify cognition. It provides a means to comunicate ideas or facts about the data, to validate hypotheses, and facilitates the discovery of new facts via exploration. This book introduces the concepts and methods of Information Visualization in an easy-to-understand way, illustrating how to pictorially represent structured and unstructured data, making it easier to comprehend and interpret. Riccardo Mazza focuses on the human aspects of the process of visualization rather than the algorithmic or graphic design aspects.




Modern Geometric Computing for Visualization


Book Description

This volume is on "modem geometric computing for visualization" which is at the forefront of multi-disciplinary advanced research areas. This area is attracting intensive research interest across many application fields: singularity in cosmology, turbulence in ocean engineering, high energy physics, molecular dynamics, environmental problems, modem mathe matics, computer graphics, and pattern recognition. Visualization re quires the computation of displayable shapes which are becoming more and more complex in proportion to the complexity of the objects and phenomena visualized. Fast computation requires information locality. Attaining information locality is achieved through characterizing the shapes in geometry and topology, and the large amount of computation required through the use of supercomputers. This volume contains the initial results of our efforts to satisfy these re quirements by inviting experts and selecting new research works through review processes. To be more specific, this book presents the proceedings of the International Workshop on Modem Geometric Computing for Visualization held at Kogakuin University, Tokyo, Japan, June 29-30, 1992 organized by the Computer Graphics Society, Japan Personal Com puter Software Association, Kogakuin University, and the Department of Information Science, Faculty of Science, The University of Tokyo. We received extremely high-quality papers for review from five different countries, one from Australia, one from Italy, four from Japan, one from Singapore and three from the United States, and we accepted eight papers and rejected two.




Better Data Visualizations


Book Description

Now more than ever, content must be visual if it is to travel far. Readers everywhere are overwhelmed with a flow of data, news, and text. Visuals can cut through the noise and make it easier for readers to recognize and recall information. Yet many researchers were never taught how to present their work visually. This book details essential strategies to create more effective data visualizations. Jonathan Schwabish walks readers through the steps of creating better graphs and how to move beyond simple line, bar, and pie charts. Through more than five hundred examples, he demonstrates the do’s and don’ts of data visualization, the principles of visual perception, and how to make subjective style decisions around a chart’s design. Schwabish surveys more than eighty visualization types, from histograms to horizon charts, ridgeline plots to choropleth maps, and explains how each has its place in the visual toolkit. It might seem intimidating, but everyone can learn how to create compelling, effective data visualizations. This book will guide you as you define your audience and goals, choose the graph that best fits for your data, and clearly communicate your message.




Graphics Modeling and Visualization in Science and Technology


Book Description

The book reports on a workshop on Graphics Modeling and Visualization in scientific, engineering and technical applications. Visualization is known as the key technology to control massive data sets and to achieve insight into these tera bytes of data. Graphics Modeling is the enabling technology for advanced interaction. The papers report on applied visualization or basic research in modeling and visualization. Applications - using commercial or experimental visualization tools - cover the following fields: engineering and design, environmental research, material science, computational sciences, fluid dynamics and algorithmic visualization.