An Investigation of Gas Turbine Combustors with High Inlet Air Temperatures. Part 3: Experimental Developments


Book Description

Current gas turbine combustor design philosophy must reflect consideration of both emission control and high inlet air temperature effects on flame stability, combustor performance, and flame tube life. An experimental facility has been designed for the detailed, systematic study of gas turbine combustion as a function of realistic inlet parameters. In an attempt to provide fundamental gas turbine measurements are described. In addition to a detailed description of the experimental facility, internal gas temperature and gas sampling probing techniques, facility instrumentation, and future engine parameter settings are discussed.




An Investigation of Gas Turbine Combustors with High Inlet Air Temperatures. Part 2; Heat Transfer


Book Description

The wall temperature distribution of a combustion chamber is a function of the various heat transfer processes existing in the chamber and annulus. The basic turbulent conservation equations of mass, momentum, species, and energy are developed in an effort to provide an analytical rather than empirical method of determining the temperature distribution. However, the inclusion of radiation energy exchange using the radiative transport theory and the fact that the chamber flow is not one dimensional makes a closed form solution to the problem mathematically impossible.




An Investigation of Gas Turbine Combustors with High Inlet Air Temperatures. Part I: Combustor Modelling


Book Description

An analytical model has been developed which will predict the performance and pollutant emissions of gas turbine combustors. The entire gas turbine combustor is approximated as a collection of perfectly stirred zones. Within each zone a general hydrocarbon combustion mechanism is used to predict the gas composition and temperature. The zone volumes and sizes are assigned from consideration of the theoretically predicted gas flows thereby approximating the mixing behavior of the system. Selected predictions of the overall model for a 'typical' aircraft combustor are presented. These results are seen to be qualitatively accurate and fall in the range of values typically observed in practical systems.




An Experimental and Numerical Investigation of a Gas Turbine Research Combustor


Book Description

Gas turbine engineering faces many challenges in the constant strive to increase not only the efficiency of engines but also the various stages of development and design. Development of combustors have primarily consisted of empirical or semi-empirical modelling combined with experimental investigations. Due to the associated costs and development time a need exists for an alternative method of development. Although experimental investigations can never be substituted completely, mathematical models incorporating numerical methods have shown to be an attractive alternative to conventional combustor design methods. The purpose of this study is twofold: firstly, to experimentally investigate the physical properties associated with a research combustor that is geometrically representative of practical combustors: and secondly, to use the experimental measurements for the validation of a computational fluids dynamic model that was developed to simulate the research combustor using a commercial code. The combustor was tested at atmospheric conditions and is representative of practical combustors that are characterized by a turbulent, three-dimensional flow field. The single can combustor is divided into a primary, secondary and dilution zone, incorporating film cooling air through stacked rings and an axial swirler centred around the fuel atomizer. Measurements at different air/fuel ratios captured the thermal field during operating conditions and consisted of inside gas, liner wall and exit gas temperatures. An investigation of the different combustion models available, led to the implementation of the presumed-PDF model of unpremixed turbulent reaction. The computational grid included the external and internal flow field with velocity boundary conditions prescribed at the various inlets. Two-phase flow was not accounted for with the assumption made that the liquid fuel is introduced into the combustion chamber in a gas phase. Experimental results showed that incomplete combustion occurs in the primary zone, thereby reducing the overall efficiency. Also evident from the results obtained are the incorrect flow splits at the various inlets. Evaluation of the numerical model showed that gas temperatures inside the combustor are overpredicted. However, the numerical model is capable of capturing the correct distributions of temperatures and trends obtained experimentally. This study is successful in capturing detail temperature measurements that will be used for validation purposes to assist the development of a numerical model that can accurately predict combustion properties.










Combustion and Heat Transfer in Gas Turbine Systems


Book Description

Combustion and Heat Transfer in Gas Turbine Systems is a compilation of papers from the Proceedings of an International Propulsion Symposium held at the College of Aeronautics, Cranfield in April 1969. This compilation deals with research done by academic and scientific institutions and of industrial organizations, with some research papers covering atomization, fuels, and high-temperature materials. One paper describes the combustion system of the Concorde engine used in commercial flights, temperature of metal parts, and some design modifications to increase the mechanical life of the combustion system. Another paper discusses the evolution of the RB 162 combustion system that is used in the vertical takeoff and landing aircrafts. The RB 162 has many design features of the earlier single reversal chamber and differs in only one or two points. The book then notes the necessity of a plenum chamber burning to further development of supersonic engines and flight. One paper also proposes an alternative theory to the traditional ignition theory of altitude relighting such as those developed by Lewis and von Elbe. Another paper reposts on some observations made of the atomizing characteristics of air-blast atomizers and proposes simple changes to improve the performance of the atomizer by prefilming and allowing air to both sides of the fuel. This compilation will prove very helpful for aeronautical engineers, aviation designers, physicists, students of engineering, and readers who are interested in the design and development of jet engines and supersonic aircrafts.







Energy Research Abstracts


Book Description

Includes all works deriving from DOE, other related government-sponsored information and foreign nonnuclear information.




Advanced Technologies for Gas Turbines


Book Description

Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.