Analog Filters using MATLAB


Book Description

This textbook provides a complete introduction to analog filters for senior undergraduate and graduate students. Coverage includes the synthesis of analog filters and many other filter types including passive filters and filters with distributed elements.




Design and Analysis of Analog Filters


Book Description

Design and Analysis of Analog Filters: A Signal Processing Perspective includes signal processing/systems concepts as well as implementation. While most books on analog filter design briefly present the signal processing/systems concepts, and then concentrate on a variety of filter implementation methods, the present book reverses the emphasis, stressing signal processing concepts. Filter implementation topics are presented in Part II: passive filters, and operational amplifier active filters. However, greater emphasis on signal processing/systems concepts is included in Part I of the book than is typical. This emphasis makes the book very appropriate as part of a signal processing curriculum. Useful Aspects of Design and Analysis of Analog Filters: A Signal Processing Perspective extensive use of MATLAB® throughout, with many homework problems involving the use of MATLAB. over 200 figures; over 100 examples; a total of 345 homework problems, appearing at the ends of the chapters; complete and thorough presentation of design characteristics; complete catalog of design approaches. Audience: Design and Analysis of Analog Filters: A Signal Processing Perspective will interest anyone with a standard electrical engineering background, with a B.S. degree or beyond, or at the senior level. While designed as a textbook, its numerous practical examples make it useful as a reference for practicing engineers and scientists, particularly those working in systems design or communications. MATLAB® Examples: A valuable relationship between analog filter theory and analysis and modern digital signal processing is made by the application of MATLAB to both the design and analysis of analog filters. Throughout the book, computer-oriented problems are assigned. The disk that accompanies this book contains MATLAB functions and m-files written specifically for this book. The MATLAB functions on the disk extend basic MATLAB capabilities in terms of the design and analysis of analog filters. The m-files are used in a number of examples in the book. They are included on the disk as an instructional aid.




Digital Filters Using MATLAB


Book Description

This textbook provides comprehensive coverage for courses in the basics of design and implementation of digital filters. The book assumes only basic knowledge in digital signal processing and covers state-of-the-art methods for digital filter design and provides a simple route for the readers to design their own filters. The advanced mathematics that is required for the filter design is minimized by providing an extensive MATLAB toolbox with over 300 files. The book presents over 200 design examples with MATLAB code and over 300 problems to be solved by the reader. The students can design and modify the code for their use. The book and the design examples cover almost all known design methods of frequency-selective digital filters as well as some of the authors’ own, unique techniques.




Filter Design for Signal Processing Using MATLAB and Mathematica


Book Description

A complete up-to-date reference for advanced analog and digital IIR filter design rooted in elliptic functions. "Revolutionary" in approach, this book opens up completely new vistas in basic analog and digital IIR filter design--regardless of the technology. By introducing exceptionally elegant and creative mathematical stratagems (e.g., accurate replacement of Jacobi elliptic functions by functions comprising polynomials, square roots, and logarithms), optimization routines carried out with symbolic analysis by "Mathematica," and the advance filter design software of MATLAB, it shows readers how to design many types of filters that cannot be designed using conventional techniques. The filter design algorithms can be directly programed in any language or environment such as Visual BASIC, Visual C, Maple, DERIVE, or MathCAD. Signals; Systems; Transforms; Classical Analog Filter Design; Advanced Analog Filter Design Case Studies; Advanced Analog Filter Design Algorithms; Multi-criteria Optimization of Analog Filter Designs; Classical Digital Filter Design; Advanced Digital Filter Design Case Studies; Advanced Digital Filter Design Algorithms; Multi-criteria Optimization of Digital Filter Designs; Elliptic Functions; Elliptic Rational Function.




Introduction to Digital Filters


Book Description

A digital filter can be pictured as a "black box" that accepts a sequence of numbers and emits a new sequence of numbers. In digital audio signal processing applications, such number sequences usually represent sounds. For example, digital filters are used to implement graphic equalizers and other digital audio effects. This book is a gentle introduction to digital filters, including mathematical theory, illustrative examples, some audio applications, and useful software starting points. The theory treatment begins at the high-school level, and covers fundamental concepts in linear systems theory and digital filter analysis. Various "small" digital filters are analyzed as examples, particularly those commonly used in audio applications. Matlab programming examples are emphasized for illustrating the use and development of digital filters in practice.




Digital Filters


Book Description

The book is not an exposition on digital signal processing (DSP) but rather a treatise on digital filters. The material and coverage is comprehensive, presented in a consistent that first develops topics and subtopics in terms it their purpose, relationship to other core ideas, theoretical and conceptual framework, and finally instruction in the implementation of digital filter devices. Each major study is supported by Matlab-enabled activities and examples, with each Chapter culminating in a comprehensive design case study.




Electronic Circuits with MATLAB, PSpice, and Smith Chart


Book Description

Provides practical examples of circuit design and analysis using PSpice, MATLAB, and the Smith Chart This book presents the three technologies used to deal with electronic circuits: MATLAB, PSpice, and Smith chart. It gives students, researchers, and practicing engineers the necessary design and modelling tools for validating electronic design concepts involving bipolar junction transistors (BJTs), field-effect transistors (FET), OP Amp circuits, and analog filters. Electronic Circuits with MATLAB®, PSpice®, and Smith Chart presents analytical solutions with the results of MATLAB analysis and PSpice simulation. This gives the reader information about the state of the art and confidence in the legitimacy of the solution, as long as the solutions obtained by using the two software tools agree with each other. For representative examples of impedance matching and filter design, the solution using MATLAB and Smith chart (Smith V4.1) are presented for comparison and crosscheck. This approach is expected to give the reader confidence in, and a deeper understanding of, the solution. In addition, this text: Increases the reader's understanding of the underlying processes and related equations for the design and analysis of circuits Provides a stepping stone to RF (radio frequency) circuit design by demonstrating how MATLAB can be used for the design and implementation of microstrip filters Features two chapters dedicated to the application of Smith charts and two-port network theory Electronic Circuits with MATLAB®, PSpice®, and Smith Chart will be of great benefit to practicing engineers and graduate students interested in circuit theory and RF circuits.




Analog Filters


Book Description

Analog Filters, Second Edition covers four major fundamental types of analog filters - passive, op amp-RC, switched-capacitor, and operational transconductance amplifier-capacitor (OTA-C). (The last of these types is the major addition in the Second Edition). The emphasis is on the fundamental principles and theory of analog filters. It is targeted toward readers in telecommunications, signal processing, electronics, controls, instrumentation, bioengineering, etc. It introduces the reader to the elegant theory in the development of analog filters. Although some of the mechanical steps for generating filters are covered, the book stresses the mathematical bases and the scholastic ingenuity of analog filter theory. It should be helpful to nonspecialist electrical engineers to gain a background perspective and some basic insight to the development of real-time filters. In many modern advances in signal processing, their concepts and procedures have close links to analog filters. The material in this book will provide engineers with a better perspective and more penetrating appreciation of many modern signal-processing techniques. Also by Kendall Su: Handbook of Tables for Elliptic-Function Filters, ISBN 0-7923-9109-8.




Digital Signal Processing Using MATLAB for Students and Researchers


Book Description

Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.