Analog Interfacing to Embedded Microprocessor Systems


Book Description

System Design; Digital to Analog Converters; Sensors; Time-Based Measurements; Output Control Methods; Solenoids, Relays, and Other Analog Outputs; Motors; EMI; High Precision Applications; Standard Interfaces.




Analog Interfacing to Embedded Microprocessors


Book Description

Analog Interfacing to Embedded Microprocessors addresses the technologies and methods used in interfacing analog devices to microprocessors, providing in-depth coverage of practical control applications, op amp examples, and much more. A companion to the author's popular Embedded Microprocessor Systems: Real World Design, this new embedded systems book focuses on measurement and control of analog quantities in embedded systems that are required to interface to the real world. At a time when modern electronic systems are increasingly digital, a comprehensive source on interfacing the real world to microprocessors should prove invaluable to embedded systems engineers, students, technicians, and hobbyists. Anyone involved in connecting the analog environment to their digital machines, or troubleshooting such connections will find this book especially useful. Stuart Ball is also the author of Debugging Embedded Microprocessor Systems, both published by Newnes. Additionally, Stuart has written articles for periodicals such as Circuit Cellar INK, Byte, and Modern Electronics. Provides hard-to-find information on interfacing analog devices and technologies to the purely digital world of embedded microprocessors. Gives the reader the insight and perspective of a real embedded systems design engineer, including tips that only a hands-on professional would know. Covers important considerations for both hardware and software systems when linking analog and digital devices.




Embedded System Design on a Shoestring


Book Description

In this practical guide, experienced embedded engineer Lewin Edwards demonstrates faster, lower-cost methods for developing high-end embedded systems. With today's tight schedules and lower budgets, embedded designers are under greater pressure to deliver prototypes and system designs faster and cheaper. Edwards demonstrates how the use of the right tools and operating systems can make seemingly impossible deadlines possible. Designer's Guide to Embedded Systems Development shares many advanced, in-the-trenches design secrets to help engineers achieve better performance on the job. In particular, it covers many of the newer design tools supported by the GPL (GNU Public License) system. Code examples are given to provide concrete illustrations of tasks described in the text. The general procedures are applicable to many possible projects based on any 16/32-bit microcontroller. The book covers choosing the right architecture and development hardware to fit the project; choosing an operating system and developing a toolchain; evaluating software licenses and how they affect a project; step-by-step building instructions for gcc, binutils, gdb and newlib for the ARM7 core used in the case study project; prototyping techniques using a custom printed circuit board; debugging tips; and portability considerations. A wealth of practical tips, tricks and techniques Design better, faster and more cost-effectively




ARM Microprocessor Systems


Book Description

This book presents the use of a microprocessor-based digital system in our daily life. Its bottom-up approach ensures that all the basic building blocks are covered before the development of a real-life system. The ultimate goal of the book is to equip students with all the fundamental building blocks as well as their integration, allowing them to implement the applications they have dreamed up with minimum effort.




Embedded Microprocessor Systems


Book Description

The less-experienced engineer will be able to apply Ball's advice to everyday projects and challenges immediately with amazing results. In this new edition, the author has expanded the section on debug to include avoiding common hardware, software and interrupt problems. Other new features include an expanded section on system integration and debug to address the capabilities of more recent emulators and debuggers, a section about combination microcontroller/PLD devices, and expanded information on industry standard embedded platforms. - Covers all 'species' of embedded system chips rather than specific hardware - Learn how to cope with 'real world' problems - Design embedded systems products that are reliable and work in real applications




Embedded Microcontroller Interfacing


Book Description

Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teaching of mixed-signal microcontrollers and their use for project work has become compulsory. Students face a lot of difficulties when they have to interface a microcontroller with the electronics they deal with. This book addresses some issues of interfacing the microcontrollers and describes some project implementations with the Silicon Lab C8051F020 mixed–signal microcontroller. The intended readers are college and university students specializing in electronics, computer systems engineering, electrical and electronics engineering; researchers involved with electronics based system, practitioners, technicians and in general anybody interested in microcontrollers based projects.




Embedded Systems Design


Book Description

In this new edition the latest ARM processors and other hardware developments are fully covered along with new sections on Embedded Linux and the new freeware operating system eCOS. The hot topic of embedded systems and the internet is also introduced. In addition a fascinating new case study explores how embedded systems can be developed and experimented with using nothing more than a standard PC.* A practical introduction to the hottest topic in modern electronics design* Covers hardware, interfacing and programming in one book* New material on Embedded Linux for embedded internet systems




Embedded System Interfacing


Book Description

Embedded System Interfacing: Design for the Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) takes a comprehensive approach to the interface between embedded systems and software. It provides the principles needed to understand how digital and analog interfaces work and how to design new interfaces for specific applications. The presentation is self-contained and practical, with discussions based on real-world components. Design examples are used throughout the book to illustrate important concepts. This book is a complement to the author's Computers as Components, now in its fourth edition, which concentrates on software running on the CPU, while Embedded System Interfacing explains the hardware surrounding the CPU. - Provides a comprehensive background in embedded system interfacing techniques - Includes design examples to illustrate important concepts and serve as the basis for new designs - Discusses well-known, widely available hardware components and computer-aided design tools




Embedded Systems Architecture


Book Description

Embedded Systems Architecture is a practical and technical guide to understanding the components that make up an embedded system's architecture. This book is perfect for those starting out as technical professionals such as engineers, programmers and designers of embedded systems; and also for students of computer science, computer engineering and electrical engineering. It gives a much-needed 'big picture' for recently graduated engineers grappling with understanding the design of real-world systems for the first time, and provides professionals with a systems-level picture of the key elements that can go into an embedded design, providing a firm foundation on which to build their skills. - Real-world approach to the fundamentals, as well as the design and architecture process, makes this book a popular reference for the daunted or the inexperienced: if in doubt, the answer is in here! - Fully updated with new coverage of FPGAs, testing, middleware and the latest programming techniques in C, plus complete source code and sample code, reference designs and tools online make this the complete package - Visit the companion web site at http://booksite.elsevier.com/9780123821966/ for source code, design examples, data sheets and more - A true introductory book, provides a comprehensive get up and running reference for those new to the field, and updating skills: assumes no prior knowledge beyond undergrad level electrical engineering - Addresses the needs of practicing engineers, enabling it to get to the point more directly, and cover more ground. Covers hardware, software and middleware in a single volume - Includes a library of design examples and design tools, plus a complete set of source code and embedded systems design tutorial materials from companion website




Introduction to Embedded Systems, Second Edition


Book Description

An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.