Analysis and Interpretation of Range Images


Book Description

Computer vision researchers have been frustrated in their attempts to automatically derive depth information from conventional two-dimensional intensity images. Research on "shape from texture", "shape from shading", and "shape from focus" is still in a laboratory stage and had not seen much use in commercial machine vision systems. A range image or a depth map contains explicit information about the distance from the sensor to the object surfaces within the field of view in the scene. Information about "surface geometry" which is important for, say, three-dimensional object recognition is more easily extracted from "2 1/2 D" range images than from "2D" intensity images. As a result, both active sensors such as laser range finders and passive techniques such as multi-camera stereo vision are being increasingly utilized by vision researchers to solve a variety of problems. This book contains chapters written by distinguished computer vision researchers covering the following areas: Overview of 3D Vision Range Sensing Geometric Processing Object Recognition Navigation Inspection Multisensor Fusion A workshop report, written by the editors, also appears in the book. It summarizes the state of the art and proposes future research directions in range image sensing, processing, interpretation, and applications. The book also contains an extensive, up-to-date bibliography on the above topics. This book provides a unique perspective on the problem of three-dimensional sensing and processing; it is the only comprehensive collection of papers devoted to range images. Both academic researchers interested in research issues in 3D vision and industrial engineers in search of solutions to particular problems will find this a useful reference book.













Remote Sensing Digital Image Analysis


Book Description

With the widespread availability of satellite and aircraft remote sensing image data in digital form, and the ready access most remote sensing practitioners have to computing systems for image interpretation, there is a need to draw together the range of digital image processing procedures and methodologies commonly used in this field into a single treatment. It is the intention of this book to provide such a function, at a level meaningful to the non-specialist digital image analyst, but in sufficient detail that algorithm limitations, alternative procedures and current trends can be appreciated. Often the applications specialist in remote sensing wishing to make use of digital processing procedures has had to depend upon either the mathematically detailed treatments of image processing found in the electrical engineering and computer science literature, or the sometimes necessarily superficial treatments given in general texts on remote sensing. This book seeks to redress that situation. Both image enhancement and classification techniques are covered making the material relevant in those applications in which photointerpretation is used for information extraction and in those wherein information is obtained by classification.







Theory & Applications of Image Analysis


Book Description

This book contains 31 papers carefully selected from among those presented at the 7th Scandinavian Conference on Image Analysis. The authors have extended their papers to give a more in-depth discussion of the theory, or of the experimental validation of the method they have proposed. The topics covered are current and wide-ranging and include both 2D- and 3D-vision, and low to high level vision.




The Image Processing Handbook


Book Description

Whether obtained by microscopes, space probes, or the human eye, the same basic tools can be applied to acquire, process, and analyze the data contained in images. Ideal for self study, The Image Processing Handbook, Sixth Edition, first published in 1992, raises the bar once again as the gold-standard reference on this subject. Using extensive new illustrations and diagrams, it offers a logically organized exploration of the important relationship between 2D images and the 3D structures they reveal. Provides Hundreds of Visual Examples in FULL COLOR! The author focuses on helping readers visualize and compare processing and measurement operations and how they are typically combined in fields ranging from microscopy and astronomy to real-world scientific, industrial, and forensic applications. Presenting methods in the order in which they would be applied in a typical workflow—from acquisition to interpretation—this book compares a wide range of algorithms used to: Improve the appearance, printing, and transmission of an image Prepare images for measurement of the features and structures they reveal Isolate objects and structures, and measure their size, shape, color, and position Correct defects and deal with limitations in images Enhance visual content and interpretation of details This handbook avoids dense mathematics, instead using new practical examples that better convey essential principles of image processing. This approach is more useful to develop readers’ grasp of how and why to apply processing techniques and ultimately process the mathematical foundations behind them. Much more than just an arbitrary collection of algorithms, this is the rare book that goes beyond mere image improvement, presenting a wide range of powerful example images that illustrate techniques involved in color processing and enhancement. Applying his 50-year experience as a scientist, educator, and industrial consultant, John Russ offers the benefit of his image processing expertise for fields ranging from astronomy and biomedical research to food science and forensics. His valuable insights and guidance continue to make this handbook a must-have reference.




Object-Based Image Analysis


Book Description

This book brings together a collection of invited interdisciplinary persp- tives on the recent topic of Object-based Image Analysis (OBIA). Its c- st tent is based on select papers from the 1 OBIA International Conference held in Salzburg in July 2006, and is enriched by several invited chapters. All submissions have passed through a blind peer-review process resulting in what we believe is a timely volume of the highest scientific, theoretical and technical standards. The concept of OBIA first gained widespread interest within the GIScience (Geographic Information Science) community circa 2000, with the advent of the first commercial software for what was then termed ‘obje- oriented image analysis’. However, it is widely agreed that OBIA builds on older segmentation, edge-detection and classification concepts that have been used in remote sensing image analysis for several decades. Nevert- less, its emergence has provided a new critical bridge to spatial concepts applied in multiscale landscape analysis, Geographic Information Systems (GIS) and the synergy between image-objects and their radiometric char- teristics and analyses in Earth Observation data (EO).




Remote Sensing and Image Interpretation


Book Description

From recent developments in digital image processing to the next generation of satellite systems, this book provides a comprehensive introduction to the field of remote sensing and image interpretation. This book is discipline neutral, so readers in any field of study can gain a clear understanding of these systems and their virtually unlimited applications. * The authors underscore close interactions among the related areas of remote sensing, GIS, GPS, digital image processing, and environmental modeling. * Appendices include material on sources of remote sensing data and information, remote sensing periodicals, online glossaries, and online tutorials.