Analysis and Modeling of Neural Systems


Book Description

I - Analysis and Modeling Tools and Techniques.- Section 1: Analysis.- Assembly Connectivity and Activity: Methods, Results, Interpretations.- Visualization of Cortical Connections With Voltage Sensitive Dyes.- Channels, Coupling, and Synchronized Rhythmic Bursting Activity.- Sparse-stimulation and Wiener Kernels.- Quantitative Search for Stimulus-Specific Patterns in the Human Electroencephalogram (EEG) During a Somatosensory Task.- Section 2: Modeling.- Functional Insights About Synaptic Inputs to Dendrites.- Dendritic Control of Hebbian Computations.- Low Threshold Spikes and Rhythmic Oscil.




Computation and Neural Systems


Book Description

Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.




Neural Networks: Computational Models and Applications


Book Description

Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.




Advanced Models of Neural Networks


Book Description

This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.




Neural Modeling


Book Description

The purpose of this book is to introduce and survey the various quantitative methods which have been proposed for describing, simulating, embodying, or characterizing the processing of electrical signals in nervous systems. We believe that electrical signal processing is a vital determinant of the functional organization of the brain, and that in unraveling the inherent complexities of this processing it will be essential to utilize the methods of quantification and modeling which have led to crowning successes in the physical and engineering sciences. In comprehensive terms, we conceive neural modeling to be the attempt to relate, in nervous systems, function to structure on the basis of operation. Sufficient knowledge and appropriate tools are at hand to maintain a serious and thorough study in the area. However, work in the area has yet to be satisfactorily integrated within contemporary brain research. Moreover, there exists a good deal of inefficiency within the area resulting from an overall lack of direction, critical self-evaluation, and cohesion. Such theoretical and modeling studies as have appeared exist largely as fragmented islands in the literature or as sparsely attended sessions at neuroscience conferences. In writing this book, we were guided by three main immediate objectives. Our first objective is to introduce the area to the upcoming generation of students of both the hard sciences and psychological and biological sciences in the hope that they might eventually help bring about the contributions it promises.




Fundamentals of Neural Network Modeling


Book Description

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble







Sensitivity Analysis for Neural Networks


Book Description

Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.




Neuronal Dynamics


Book Description

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.




Artificial Neural Networks in Biological and Environmental Analysis


Book Description

Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound