Analysis, Modelling, Optimization, and Numerical Techniques


Book Description

This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.




Numerical Analysis and Optimization


Book Description

This text, based on the author's teaching at École Polytechnique, introduces the reader to the world of mathematical modelling and numerical simulation. Covering the finite difference method; variational formulation of elliptic problems; Sobolev spaces; elliptical problems; the finite element method; Eigenvalue problems; evolution problems; optimality conditions and algorithms and methods of operational research, and including a several exercises throughout, this is an ideal text for advanced undergraduate students and graduates in applied mathematics, engineering, computer science, and the physical sciences.




Advances in Optimization and Numerical Analysis


Book Description

In January 1992, the Sixth Workshop on Optimization and Numerical Analysis was held in the heart of the Mixteco-Zapoteca region, in the city of Oaxaca, Mexico, a beautiful and culturally rich site in ancient, colonial and modern Mexican civiliza tion. The Workshop was organized by the Numerical Analysis Department at the Institute of Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University, as were the previous ones in 1978, 1979, 1981, 1984 and 1989. As were the third, fourth, and fifth workshops, this one was supported by a grant from the Mexican National Council for Science and Technology, and the US National Science Foundation, as part of the joint Scientific and Technical Cooperation Program existing between these two countries. The participation of many of the leading figures in the field resulted in a good representation of the state of the art in Continuous Optimization, and in an over view of several topics including Numerical Methods for Diffusion-Advection PDE problems as well as some Numerical Linear Algebraic Methods to solve related pro blems. This book collects some of the papers given at this Workshop.




Numerical Methods and Optimization in Finance


Book Description

Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.




Numerical Analysis and Optimization


Book Description

This book gathers selected, peer-reviewed contributions presented at the Fifth International Conference on Numerical Analysis and Optimization (NAO-V), which was held at Sultan Qaboos University, Oman, on January 6-9, 2020. Each chapter reports on developments in key fields, such as numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, derivative-free optimization methods, programming models, and challenging applications that frequently arise in statistics, econometrics, finance, physics, medicine, biology, engineering and industry. Many real-world, complex problems can be formulated as optimization tasks, and can be characterized further as large scale, unconstrained, constrained, non-convex, nondifferentiable or discontinuous, and therefore require adequate computational methods, algorithms and software tools. These same tools are often employed by researchers working in current IT hot topics, such as big data, optimization and other complex numerical algorithms in the cloud, devising special techniques for supercomputing systems. This interdisciplinary view permeates the work included in this volume. The NAO conference series is held every three years at Sultan Qaboos University, with the aim of bringing together a group of international experts and presenting novel and advanced applications to facilitate interdisciplinary studies among pure scientific and applied knowledge. It is a venue where prominent scientists gather to share innovative ideas and know-how relating to new scientific methodologies, to promote scientific exchange, to discuss possible future cooperations, and to promote the mobility of local and young researchers.




Numerical Methods in Sensitivity Analysis and Shape Optimization


Book Description

Sensitivity analysis and optimal shape design are key issues in engineering that have been affected by advances in numerical tools currently available. This book, and its supplementary online files, presents basic optimization techniques that can be used to compute the sensitivity of a given design to local change, or to improve its performance by local optimization of these data. The relevance and scope of these techniques have improved dramatically in recent years because of progress in discretization strategies, optimization algorithms, automatic differentiation, software availability, and the power of personal computers. Numerical Methods in Sensitivity Analysis and Shape Optimization will be of interest to graduate students involved in mathematical modeling and simulation, as well as engineers and researchers in applied mathematics looking for an up-to-date introduction to optimization techniques, sensitivity analysis, and optimal design.




Numerical Optimization


Book Description

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.




Mathematical Modelling, Optimization, Analytic and Numerical Solutions


Book Description

This book discusses a variety of topics related to industrial and applied mathematics, focusing on wavelet theory, sampling theorems, inverse problems and their applications, partial differential equations as a model of real-world problems, computational linguistics, mathematical models and methods for meteorology, earth systems, environmental and medical science, and the oil industry. It features papers presented at the International Conference in Conjunction with 14th Biennial Conference of ISIAM, held at Guru Nanak Dev University, Amritsar, India, on 2–4 February 2018. The conference has emerged as an influential forum, bringing together prominent academic scientists, experts from industry, and researchers. The topics discussed include Schrodinger operators, quantum kinetic equations and their application, extensions of fractional integral transforms, electrical impedance tomography, diffuse optical tomography, Galerkin method by using wavelets, a Cauchy problem associated with Korteweg–de Vries equation, and entropy solution for scalar conservation laws. This book motivates and inspires young researchers in the fields of industrial and applied mathematics.




Numerical Optimization in Engineering and Sciences


Book Description

This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.




Numerical Methods and Optimization


Book Description

For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro