The Prevention and Treatment of Missing Data in Clinical Trials


Book Description

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.




Sharing Clinical Trial Data


Book Description

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.




Assuring Data Quality and Validity in Clinical Trials for Regulatory Decision Making


Book Description

In an effort to increase knowledge and understanding of the process of assuring data quality and validity in clinical trials, the IOM hosted a workshop to open a dialogue on the process to identify and discuss issues of mutual concern among industry, regulators, payers, and consumers. The presenters and panelists together developed strategies that could be used to address the issues that were identified. This IOM report of the workshop summarizes the present status and highlights possible strategies for making improvements to the education of interested and affected parties as well as facilitating future planning.




Clinical Trials


Book Description

Clinical Trials, Second Edition, offers those engaged in clinical trial design a valuable and practical guide. This book takes an integrated approach to incorporate biomedical science, laboratory data of human study, endpoint specification, legal and regulatory aspects and much more with the fundamentals of clinical trial design. It provides an overview of the design options along with the specific details of trial design and offers guidance on how to make appropriate choices. Full of numerous examples and now containing actual decisions from FDA reviewers to better inform trial design, the 2nd edition of Clinical Trials is a must-have resource for early and mid-career researchers and clinicians who design and conduct clinical trials. - Contains new and fully revised material on key topics such as biostatistics, biomarkers, orphan drugs, biosimilars, drug regulations in Europe, drug safety, regulatory approval and more - Extensively covers the "study schema" and related features of study design - Incorporates laboratory data from studies on human patients to provide a concrete tool for understanding the concepts in the design and conduct of clinical trials - Includes decisions made by FDA reviewers when granting approval of a drug as real world learning examples for readers




Registries for Evaluating Patient Outcomes


Book Description

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.




Small Clinical Trials


Book Description

Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.




Strategy and Statistics in Clinical Trials


Book Description

Delineates the statistical building blocks and concepts of clinical trials.




Evidence Synthesis and Meta-analysis for Drug Safety


Book Description

At any point in the drug development process, systematic reviews and meta-analysis can provide important information to guide the future path of the development program and any actions that might be needed in the post-marketing setting. This report gives the rationale for why and when a meta-analysis should be considered, all in the context of regulatory decision-making, and the tasks, data collection, and analyses that need to be carried out to inform those decisions. There is increasing demand by decision-makers in health care, the bio-pharmaceutical industry, and society at large to have access to the best available evidence on benefits and risks of medicinal products. The best strategy will take an overview of all the evidence and where it is possible and sensible, combine the evidence and summarize the results. For efficacy, the outcomes generally use the same or very similar predefined events for each of the trials to be included. Most regulatory guidance and many Cochrane Collaboration reviews have usually given more attention to assessment of benefits, while issues around combining evidence on harms have not been as well-covered. However, the (inevitably) unplanned nature of the data on safety makes the process more difficult. Combining evidence on adverse events (AEs), where these were not the focus of the original studies, is more challenging than combining evidence on pre-specified benefits. This focus on AEs represents the main contribution of the current CIOMS X report. The goal of the CIOMS X report is to provide principles on appropriate application of meta-analysis in assessing safety of pharmaceutical products to inform regulatory decision-making. This report is about meta-analysis in this narrow area, but the present report should also provide conceptually helpful points to consider for a wider range of applications, such as vaccines, medical devices, veterinary medicines or even products that are combinations of medicinal products and medical devices. Although some of the content of this report describes highly technical statistical concepts and methods (in particular Chapter 4), the ambition of the working group has been to make it comprehensible to non-statisticians for its use in clinical epidemiology and regulatory science. To that end, Chapters 3 and 4, which contain the main technical statistical aspects of the appropriate design, analysis and reporting of a meta-analysis of safety data are followed by Chapter 5 with a thought process for evaluating the findings of a meta-analysis and how to communicate these.




Analysis of Safety Data of Drug Trials


Book Description

In 2010, the 5th edition of the textbook, "Statistics Applied to Clinical Studies", was published by Springer and since then has been widely distributed. The primary object of clinical trials of new drugs is to demonstrate efficacy rather than safety. However, a trial in humans which does not adequately address safety is unethical, while the assessment of safety variables is an important element of the trial. An effective approach is to present summaries of the prevalence of adverse effects and their 95% confidence intervals. In order to estimate the probability that the differences between treatment and control group occurred merely by chance, a statistical test can be performed. In the past few years, this pretty crude method has been supplemented and sometimes, replaced with more sophisticated and better sensitive methodologies, based on machine learning clusters and networks, and multivariate analyses. As a result, it is time that an updated version of safety data analysis was published. The issue of dependency also needs to be addressed. Adverse effects may be either dependent or independent of the main outcome. For example, an adverse effect of alpha blockers is dizziness and this occurs independently of the main outcome "alleviation of Raynaud 's phenomenon". In contrast, the adverse effect "increased calorie intake" occurs with "increased exercise", and this adverse effect is very dependent on the main outcome "weight loss". Random heterogeneities, outliers, confounders, interaction factors are common in clinical trials, and all of them can be considered as kinds of adverse effects of the dependent type. Random regressions and analyses of variance, high dimensional clusterings, partial correlations, structural equations models, Bayesian methods are helpful for their analysis. The current edition was written for non-mathematicians, particularly medical and health professionals and students. It provides examples of modern analytic methods so far largely unused in safety analysis. All of the 14 chapters have two core characteristics, First, they are intended for current usage, and they are particularly concerned with that usage. Second, they try and tell what readers need to know in order to understand and apply the methods. For that purpose, step by step analyses of both hypothesized and real data examples are provided.




Principles and Practice of Clinical Trials


Book Description

This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference.