Analysis of Step-Stress Models


Book Description

Analysis of Step-Stress Models: Existing Results and Some Recent Developments describes, in detail, the step-stress models and related topics that have received significant attention in the last few years. Although two books, Bagdonavicius and Nikulin (2001) and Nelson (1990), on general accelerated life testing models are available, no specific book is available on step-stress models. Due to the importance of this particular topic, Balakrishnan (2009) provided an excellent review for exponential step-stress models. The scope of this book is much more, providing the inferential issues for different probability models, both from the frequentist and Bayesian points-of-view. Explains the different distributions of the Cumulative Exposure Mode Covers many different models used for step-stress analysis Discusses Step-stress life testing under the competing or complementary risk model










Advances in Statistics - Theory and Applications


Book Description

This edited collection brings together internationally recognized experts in a range of areas of statistical science to honor the contributions of the distinguished statistician, Barry C. Arnold. A pioneering scholar and professor of statistics at the University of California, Riverside, Dr. Arnold has made exceptional advancements in different areas of probability, statistics, and biostatistics, especially in the areas of distribution theory, order statistics, and statistical inference. As a tribute to his work, this book presents novel developments in the field, as well as practical applications and potential future directions in research and industry. It will be of interest to graduate students and researchers in probability, statistics, and biostatistics, as well as practitioners and technicians in the social sciences, economics, engineering, and medical sciences.







Analysis Patterns


Book Description

Martin Fowler is a consultant specializing in object-oriented analysis and design. This book presents and discusses a number of object models derived from various problem domains. All patterns and models presented have been derived from the author's own consulting work and are based on real business cases.




The Art of Progressive Censoring


Book Description

This book offers a thorough and updated guide to the theory and methods of progressive censoring, an area that has experienced tremendous growth over the last decade. The theory has developed quite nicely in some special cases having practical applications to reliability and quality. The Art of Progressive Censoring is a valuable reference for graduate students, researchers, and practitioners in applied statistics, quality control, life testing, and reliability. With its accessible style and concrete examples, the work may also be used as a textbook in an advanced undergraduate or a beginning graduate course on censoring or progressive censoring, as well as a supplementary textbook for a course on ordered data.




Finite Element Modeling for Stress Analysis


Book Description

This undergraduate text is designed for those who will use finite elements in their daily work. It emphasizes the behaviour of finite elements, and describes how to use the methods successfully while including enough theory to explain why elements behave as they do.




Modern Experimental Stress Analysis


Book Description

All structures suffer from stresses and strains caused by factors such as wind loading and vibrations. Stress analysis and measurement is an integral part of the design and management of structures, and is used in a wide range of engineering areas. There are two main types of stress analyses – the first is conceptual where the structure does not yet exist and the analyst has more freedom to define geometry, materials, loads etc – generally such analysis is undertaken using numerical methods such as the finite element method. The second is where the structure (or a prototype) exists, and so some parameters are known. Others though, such as wind loading or environmental conditions will not be completely known and yet may profoundly affect the structure. These problems are generally handled by an ad hoc combination of experimental and analytical methods. This book therefore tackles one of the most common challenges facing engineers – how to solve a stress analysis problem when all of the required information is not available. Its central concern is to establish formal methods for including measurements as part of the complete analysis of such problems by presenting a new approach to the processing of experimental data and thus to experimentation itself. In addition, engineers using finite element methods will be able to extend the range of problems they can solve (and thereby the range of applications they can address) using the methods developed here. Modern Experimental Stress Analysis: Presents a comprehensive and modern reformulation of the approach to processing experimental data Offers a large collection of problems ranging from static to dynamic, linear to non-linear Covers stress analysis with the finite element method Includes a wealth of documented experimental examples Provides new ideas for researchers in computational mechanics




Hazard Rate Modeling of Step-Stress Experiments


Book Description

Step-stress models form an essential part of accelerated life testing procedures. Under a step-stress model, the test units are exposed to stress levels that increase at intermediate time points of the experiment. The goal is to develop statistical inference for, e.g., the mean lifetime under each stress level, targeting to the extrapolation under normal operating conditions. This is achieved through an appropriate link function that connects the stress level to the associated mean lifetime. The assumptions made about the time points of stress level change, the termination point of the experiment, the underlying lifetime distributions, the type of censoring (if present), and the way of monitoring lead to alternative models. Step-stress models can be designed for single or multiple samples. We discuss recent developments in designing and analyzing step-stress models based on hazard rates. The inference approach adopted is mainly the maximum likelihood, but Bayesian approaches are briefly discussed.