Analysis of the Hodge Laplacian on the Heisenberg Group


Book Description

The authors consider the Hodge Laplacian \Delta on the Heisenberg group H_n, endowed with a left-invariant and U(n)-invariant Riemannian metric. For 0\le k\le 2n+1, let \Delta_k denote the Hodge Laplacian restricted to k-forms. In this paper they address three main, related questions: (1) whether the L^2 and L^p-Hodge decompositions, 1




Geometric Aspects of Harmonic Analysis


Book Description

This volume originated in talks given in Cortona at the conference "Geometric aspects of harmonic analysis" held in honor of the 70th birthday of Fulvio Ricci. It presents timely syntheses of several major fields of mathematics as well as original research articles contributed by some of the finest mathematicians working in these areas. The subjects dealt with are topics of current interest in closely interrelated areas of Fourier analysis, singular integral operators, oscillatory integral operators, partial differential equations, multilinear harmonic analysis, and several complex variables. The work is addressed to researchers in the field.




Mathematical Reviews


Book Description




Harmonic and Complex Analysis in Several Variables


Book Description

Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and researchers in several applied disciplines will find the breadth and depth of the treatment of the subject highly useful.




Spectral Means of Central Values of Automorphic L-Functions for GL(2)


Book Description

Starting with Green's functions on adele points of considered over a totally real number field, the author elaborates an explicit version of the relative trace formula, whose spectral side encodes the informaton on period integrals of cuspidal waveforms along a maximal split torus. As an application, he proves two kinds of asymptotic mean formula for certain central -values attached to cuspidal waveforms with square-free level.




Geometric and Harmonic Analysis on Homogeneous Spaces


Book Description

This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.




Algebras of Singular Integral Operators with Kernels Controlled by Multiple Norms


Book Description

The authors study algebras of singular integral operators on R and nilpotent Lie groups that arise when considering the composition of Calderón-Zygmund operators with different homogeneities, such as operators occuring in sub-elliptic problems and those arising in elliptic problems. These algebras are characterized in a number of different but equivalent ways: in terms of kernel estimates and cancellation conditions, in terms of estimates of the symbol, and in terms of decompositions into dyadic sums of dilates of bump functions. The resulting operators are pseudo-local and bounded on for . . While the usual class of Calderón-Zygmund operators is invariant under a one-parameter family of dilations, the operators studied here fall outside this class, and reflect a multi-parameter structure.




Endoscopic Classification of Representations of Quasi-Split Unitary Groups


Book Description

In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.




Geometric Complexity Theory IV: Nonstandard Quantum Group for the Kronecker Problem


Book Description

The Kronecker coefficient is the multiplicity of the -irreducible in the restriction of the -irreducible via the natural map , where are -vector spaces and . A fundamental open problem in algebraic combinatorics is to find a positive combinatorial formula for these coefficients. The authors construct two quantum objects for this problem, which they call the nonstandard quantum group and nonstandard Hecke algebra. They show that the nonstandard quantum group has a compact real form and its representations are completely reducible, that the nonstandard Hecke algebra is semisimple, and that they satisfy an analog of quantum Schur-Weyl duality.




Brandt Matrices and Theta Series over Global Function Fields


Book Description

The aim of this article is to give a complete account of the Eichler-Brandt theory over function fields and the basis problem for Drinfeld type automorphic forms. Given arbitrary function field k together with a fixed place ∞, the authors construct a family of theta series from the norm forms of "definite" quaternion algebras, and establish an explicit Hecke-module homomorphism from the Picard group of an associated definite Shimura curve to a space of Drinfeld type automorphic forms. The "compatibility" of these homomorphisms with different square-free levels is also examined. These Hecke-equivariant maps lead to a nice description of the subspace generated by the authors' theta series, and thereby contributes to the so-called basis problem. Restricting the norm forms to pure quaternions, the authors obtain another family of theta series which are automorphic functions on the metaplectic group, and this results in a Shintani-type correspondence between Drinfeld type forms and metaplectic forms.