Analysis of Water Distribution Networks


Book Description

Analysis of a Water Distribution Network may be necessary to know its behaviour under normal and deficient conditions and the design of a new network. Various methods such as Hardy Cross, Newton-Raphson, Linear Theory, and Gradient for static and time-dependent (extended period) analyses are described with small illustrative examples. The book also covers analysis considering withdrawal along links, head-dependent and performance-based analyses, calibration of existing networks, water quality modeling, analysis considering uncertainty of parameters, and reliability analysis of water distribution networks. Brief description of available computer softwares is also given.










Drinking Water Distribution Systems


Book Description

Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.




Optimal Design of Water Distribution Networks


Book Description

Design of water distribution networks is traditionally based on trial-and-approach in which the designer assumes, based on experience and judgment, sizes of different elements and successively modifies them until a network with satisfactory hydraulic performance is obtained. This text covers: Essential hydraulic, economic optimization principles. Theory is developed gradually for optimal design of simple, single-source branched networks subjected to single loading to complex, multiple-source looped networks subjected to multiple loading. Strengthening and expansion of existing networks and also reliability-based design. Several illustrative examples enabling the reader to apply them in practice- approximately 100 line drawings.




Design of Water Supply Pipe Networks


Book Description

This authoritative resource consolidates comprehensive information on the analysis and design of water supply systems into one practical, hands-on reference. After an introduction and explanation of the basic principles of pipe flows, it covers topics ranging from cost considerations to optimal water distribution design to various types of systems to writing water distribution programs. With numerous examples and closed-form design equations, this is the definitive reference for civil and environmental engineers, water supply managers and planners, and postgraduate students.




Losses in Water Distribution Networks


Book Description

This is a best practice manual for addressing water losses in water distribution networks worldwide. Systems and methodologies are presented for improving water loss and leakage management in a range of networks, from systems with a well-developed infrastructure to those in developing countries where the network may need to be upgraded. The key feature of the manual is a diagnostic approach to develop a water loss strategy - using the appropriate tools to find the right solutions - which can be applied to any network. The methods of assessing the scale and volume of water loss are outlined, together with the procedures for setting up leakage monitoring and detection systems. As well as real losses (leakage) procedures for addressing apparent losses, by introducing regulatory and customer metering policies are explained. Suggestions are made for demand management and water conservation programmes, to complement the water loss strategy. Recommendations are made for training workshops and operation and maintenance programmes to ensure skills transfer and sustainability. The manual is illustrated throughout with case studies. Losses in Water Distribution Networks will appeal to a wide range of practitioners responsible for designing and managing a water loss strategy. These include consultants, operations managers, engineers, technicians and operational staff. It will also be a valuable reference for senior managers and decision makers, who may require an overview of the principles and procedures for controlling losses. The book will also be suitable as a source document for courses in Water Engineering, Resource Management and Environmental Management.




Performance Indicators for Water Supply Services


Book Description

The IWA Performance Indicator System for water services is now recognized as a worldwide reference. Since it first appearance in 2000, the system has been widely quoted, adapted and used in a large number of projects both for internal performance assessment and metric benchmarking. Water professionals have benefited from a coherent and flexible system, with precise and detailed definitions that in many cases have become a standard. The system has proven to be adaptable and it has been used in very different contexts for diverse purposes. The Performance Indicators System can be used in any organization regardless of its size, nature (public, private, etc.) or degree of complexity and development. The third edition of Performance Indicators for Water Supply Services represents a further improvement of the original manual. It contains a reviewed and consolidated version of the indicators, resulting from the real needs of water companies worldwide that were expressed during the extensive field testing of the original system. The indicators now properly cover bulk distribution and the needs of developing countries, and all definitions have been thoroughly revised. The confidence grading scheme has been simplified and the procedure to assess the results- uncertainty has been significantly enhanced. In addition to the updated contents of the original edition, a large part of the manual is now devoted to the practical application of the system. Complete with simplified step-by-step implementation procedures and case studies, the manual provides guidelines on how to adapt the IWA concepts and indicators to specific contexts and objectives. This new edition of Performance Indicators for Water Supply Services is an invaluable reference source for all those concerned with managing the performance of the water supply industry, including those in the water utilities as well as regulators, policy-makers and financial agencies.




Advanced Water Distribution Modeling and Management


Book Description

Accompanying CD-ROM includes: a 25-pipe academic version of WaterCAD with stand-alone interface; the WaterCAD files for individual problems; the WaterCAD user manual and an examination booklet for continuing education credits; Adobe Acrobat Reader software for viewing the manual and booklet.




Water Supply Network District Metering


Book Description

The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.