Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields


Book Description

This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation relations and canonical anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and a short description to each model is given.To graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory, this book is a good introductory text. It is also well suited for self-study and will provide readers a firm foundation of knowledge and mathematical techniques for reading more advanced books and current research articles in the field of mathematical analysis on quantum fields. Also, numerous problems are added to aid readers to develop a deeper understanding of the field.




Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition)


Book Description

This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.




Let Us Use White Noise


Book Description

Why should we use white noise analysis? Well, one reason of course is that it fills that earlier gap in the tool kit. As Hida would put it, white noise provides us with a useful set of independent coordinates, parametrized by 'time'. And there is a feature which makes white noise analysis extremely user-friendly. Typically the physicist — and not only he — sits there with some heuristic ansatz, like e.g. the famous Feynman 'integral', wondering whether and how this might make sense mathematically. In many cases the characterization theorem of white noise analysis provides the user with a sweet and easy answer. Feynman's 'integral' can now be understood, the 'It's all in the vacuum' ansatz of Haag and Coester is now making sense via Dirichlet forms, and so on in many fields of application. There is mathematical finance, there have been applications in biology, and engineering, many more than we could collect in the present volume.Finally, there is one extra benefit: when we internalize the structures of Gaussian white noise analysis we will be ready to meet another close relative. We will enjoy the important similarities and differences which we encounter in the Poisson case, championed in particular by Y Kondratiev and his group. Let us look forward to a companion volume on the uses of Poisson white noise.The present volume is more than a collection of autonomous contributions. The introductory chapter on white noise analysis was made available to the other authors early on for reference and to facilitate conceptual and notational coherence in their work.




Quantum Field Theory for Economics and Finance


Book Description

This book provides an introduction to how the mathematical tools from quantum field theory can be applied to economics and finance. Providing a range of quantum mathematical techniques for designing financial instruments, it demonstrates how a range of topics have quantum mechanical formulations, from asset pricing to interest rates.




Mathematical Theory of Quantum Fields


Book Description

This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.




Introduction to Algebraic and Constructive Quantum Field Theory


Book Description

The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Aspects of Quantum Field Theory in Curved Spacetime


Book Description

The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.




Quantum Field Theory for Mathematicians


Book Description

This should be a useful reference for anybody with an interest in quantum theory.




Noncommutative Geometry, Quantum Fields and Motives


Book Description

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.




Many-Body Problems and Quantum Field Theory


Book Description

Emphasis is placed on analogies between the various systems rather than on advanced or specialized aspects, with the purpose of illustrating common ideas within different domains of physics. Starting from a basic knowledge of quantum mechanics and classical electromagnetism, the exposition is self-contained and explicitly details all steps of the derivations. The new edition features a substantially new treatment of nucleon pairing.