Anaphora Resolution


Book Description

This book lays out a path leading from the linguistic and cognitive basics, to classical rule-based and machine learning algorithms, to today’s state-of-the-art approaches, which use advanced empirically grounded techniques, automatic knowledge acquisition, and refined linguistic modeling to make a real difference in real-world applications. Anaphora and coreference resolution both refer to the process of linking textual phrases (and, consequently, the information attached to them) within as well as across sentence boundaries, and to the same discourse referent. The book offers an overview of recent research advances, focusing on practical, operational approaches and their applications. In part I (Background), it provides a general introduction, which succinctly summarizes the linguistic, cognitive, and computational foundations of anaphora processing and the key classical rule- and machine-learning-based anaphora resolution algorithms. Acknowledging the central importance of shared resources, part II (Resources) covers annotated corpora, formal evaluation, preprocessing technology, and off-the-shelf anaphora resolution systems. Part III (Algorithms) provides a thorough description of state-of-the-art anaphora resolution algorithms, covering enhanced machine learning methods as well as techniques for accomplishing important subtasks such as mention detection and acquisition of relevant knowledge. Part IV (Applications) deals with a selection of important anaphora and coreference resolution applications, discussing particular scenarios in diverse domains and distilling a best-practice model for systematically approaching new application cases. In the concluding part V (Outlook), based on a survey conducted among the contributing authors, the prospects of the research field of anaphora processing are discussed, and promising new areas of interdisciplinary cooperation and emerging application scenarios are identified. Given the book’s design, it can be used both as an accompanying text for advanced lectures in computational linguistics, natural language engineering, and computer science, and as a reference work for research and independent study. It addresses an audience that includes academic researchers, university lecturers, postgraduate students, advanced undergraduate students, industrial researchers, and software engineers.




Anaphora Processing


Book Description

Anaphora processing is a central topic in the study of natural language and has long been the object of research in a wide range of disciplines. The correct interpretation of anaphora has also become increasingly important for real-world natural language processing applications, including machine translation, automatic abstracting, information extraction and question answering. This volume provides a unique overview of the processing of anaphora from a multi- and inter-disciplinary angle. It will be of interest and practical use to readers from fields as diverse as theoretical linguistics, corpus linguistics, computational linguistics, computer science, natural language processing, artificial intelligence, human language technology, psycholinguistics, cognitive science and translation studies. The readership includes but is not limited to university lecturers, researchers, postgraduate and senior undergraduate students.




Anaphora Resolution


Book Description

Teaching computers to solve language problems is one of the major challenges of natural language processing. There is a large amount of interesting research devoted to this field. This book fills an existing gap in the literature with an up-to-date survey of the field, including the author’s own contributions. A number of different fields overlap in anaphora resolution – computational linguistics, natural language processing (NLP), grammar, semantics, pragmatics, discourse analysis and artificial intelligence. This book begins by introducing basic notions and terminology, moving onto early research methods and approaches, recent developments and applications, and future directions. It addresses various issues related to the practical implementation of anaphora systems, such as rules employed, algorithms implemented or evaluation techniques used. This is an ideal reference book for students and researchers in this particular area of computational linguistics. Since anaphora resolution is vital for the development of any practical NLP system, the book will be of interest to readers from both academia and industry.







The Oxford Handbook of Computational Linguistics


Book Description

This handbook of computational linguistics, written for academics, graduate students and researchers, provides a state-of-the-art reference to one of the most active and productive fields in linguistics.




Natural Language Processing - NLP 2000


Book Description

This volume contains the papers prepared for the 2nd International Conference on Natural Language Processing, held 2-4 June in Patras, Greece. The conference program features invited talks and submitted papers, c- ering a wide range of NLP areas: text segmentation, morphological analysis, lexical knowledge acquisition and representation, grammar formalism and s- tacticparsing,discourse analysis,languagegeneration,man-machineinteraction, machine translation, word sense disambiguation, and information extraction. The program committee received 71 abstracts, of which unfortunately no more than 50% could be accepted. Every paper was reviewed by at least two reviewers. The fairness of the reviewing process is demonstrated by the broad spread of institutions and countries represented in the accepted papers. So many have contributed to the success of the conference. The primary credit, ofcourse, goes to theauthors andto the invitedspeakers. By theirpapers and their inspired talks they established the quality of the conference. Secondly, thanks should go to the referees and to the program committee members who did a thorough and conscientious job. It was not easy to select the papers to be presented. Last, but not least, my special thanks to the organizing committee for making this conference happen.




Recent Advances in Natural Language Processing III


Book Description

This volume brings together revised versions of a selection of papers presented at the 2003 International Conference on “Recent Advances in Natural Language Processing”. A wide range of topics is covered in the volume: semantics, dialogue, summarization, anaphora resolution, shallow parsing, morphology, part-of-speech tagging, named entity, question answering, word sense disambiguation, information extraction. Various ‘state-of-the-art’ techniques are explored: finite state processing, machine learning (support vector machines, maximum entropy, decision trees, memory-based learning, inductive logic programming, transformation-based learning, perceptions), latent semantic analysis, constraint programming. The papers address different languages (Arabic, English, German, Slavic languages) and use different linguistic frameworks (HPSG, LFG, constraint-based DCG). This book will be of interest to those who work in computational linguistics, corpus linguistics, human language technology, translation studies, cognitive science, psycholinguistics, artificial intelligence, and informatics.




Natural Language Understanding in a Semantic Web Context


Book Description

This book serves as a starting point for Semantic Web (SW) students and researchers interested in discovering what Natural Language Processing (NLP) has to offer. NLP can effectively help uncover the large portions of data held as unstructured text in natural language, thus augmenting the real content of the Semantic Web in a significant and lasting way. The book covers the basics of NLP, with a focus on Natural Language Understanding (NLU), referring to semantic processing, information extraction and knowledge acquisition, which are seen as the key links between the SW and NLP communities. Major emphasis is placed on mining sentences in search of entities and relations. In the course of this “quest", challenges will be encountered for various text analysis tasks, including part-of-speech tagging, parsing, semantic disambiguation, named entity recognition and relation extraction. Standard algorithms associated with these tasks are presented to provide an understanding of the fundamental concepts. Furthermore, the importance of experimental design and result analysis is emphasized, and accordingly, most chapters include small experiments on corpus data with quantitative and qualitative analysis of the results. This book is divided into four parts. Part I “Searching for Entities in Text” is dedicated to the search for entities in textual data. Next, Part II “Working with Corpora” investigates corpora as valuable resources for NLP work. In turn, Part III “Semantic Grounding and Relatedness” focuses on the process of linking surface forms found in text to entities in resources. Finally, Part IV “Knowledge Acquisition” delves into the world of relations and relation extraction. The book also includes three appendices: “A Look into the Semantic Web” gives a brief overview of the Semantic Web and is intended to bring readers less familiar with the Semantic Web up to speed, so that they too can fully benefit from the material of this book. “NLP Tools and Platforms” provides information about NLP platforms and tools, while “Relation Lists” gathers lists of relations under different categories, showing how relations can be varied and serve different purposes. And finally, the book includes a glossary of over 200 terms commonly used in NLP. The book offers a valuable resource for graduate students specializing in SW technologies and professionals looking for new tools to improve the applicability of SW techniques in everyday life – or, in short, everyone looking to learn about NLP in order to expand his or her horizons. It provides a wealth of information for readers new to both fields, helping them understand the underlying principles and the challenges they may encounter.




Pragmatics and Natural Language Understanding


Book Description

This book differs from other introductions to pragmatics in approaching the problems of interpreting language use in terms of interpersonal modelling of beliefs and intentions. It is intended to make issues involved in language understanding, such as speech, text, and discourse, accessible to the widest group possible -- not just specialists in linguistics or communication theorists -- but all scholars and researchers whose enterprises depend on having a useful model of how communicative agents understand utterances and expect their own utterances to be understood. Based on feedback from readers over the past seven years, explanations in every chapter have been improved and updated in this thoroughly revised version of the original text published in 1989. The most extensive revisions concern the relevance of technical notions of mutual and normal belief, and the futility of using the notion 'null context' to describe meaning. In addition, the discussion of implicature now includes an extended explication of "Grice's Cooperative Principle" which attempts to put it in the context of his theory of meaning and rationality, and to preclude misinterpretations which it has suffered over the past 20 years. The revised chapter exploits the notion of normal belief to improve the account of conversational implicature.




Natural Language Processing and Information Retrieval


Book Description

This book presents the basics and recent advancements in natural language processing and information retrieval in a single volume. It will serve as an ideal reference text for graduate students and academic researchers in interdisciplinary areas of electrical engineering, electronics engineering, computer engineering, and information technology. This text emphasizes the existing problem domains and possible new directions in natural language processing and information retrieval. It discusses the importance of information retrieval with the integration of machine learning, deep learning, and word embedding. This approach supports the quick evaluation of real-time data. It covers important topics including rumor detection techniques, sentiment analysis using graph-based techniques, social media data analysis, and language-independent text mining. Features: • Covers aspects of information retrieval in different areas including healthcare, data analysis, and machine translation • Discusses recent advancements in language- and domain-independent information extraction from textual and/or multimodal data • Explains models including decision making, random walk, knowledge graphs, word embedding, n-grams, and frequent pattern mining • Provides integrated approaches of machine learning, deep learning, and word embedding for natural language processing • Covers latest datasets for natural language processing and information retrieval for social media like Twitter The text is primarily written for graduate students and academic researchers in interdisciplinary areas of electrical engineering, electronics engineering, computer engineering, and information technology.