Andreev Reflection in Superconducting Junctions


Book Description

This book offers a primer on the fundamental theory of Andreev reflection, a fundamental process in the motion of a Cooper pair, which dominates low-energy electronic transport properties in superconductor junctions including differential conductance and Josephson current. The book concisely describes how Andreev reflection impacts the low-energy physics of electronic transport especially in topologically non-trivial superconductor junctions. In addition, it includes an introduction to topological superconductors, covering topological classification, chiral and helical superconductors, and topological edges. The book is based on the author’s lecture notes, used in his intensive lectures and while supervising his upper undergraduate and early graduate students. To fully benefit from this concise primer, readers only need an undergraduate background in quantum mechanics and statistical mechanics. Further, by highlighting Josephson junctions of topological superconductors, the book offers readers a glimpse into cutting-edge topics.




Superconductor/Semiconductor Junctions


Book Description

This book, featuring the most comprehensive treatment of Josephson junctions ever published, describes superconductor/two-dimensional-electron-gas (2DEG) structures, providing a better understanding of their transport properties. It also discusses the control of junctions using gate electrodes or injection currents, and the physical effects observed in these junctions.




Realizing an Andreev Spin Qubit


Book Description

The thesis gives the first experimental demonstration of a new quantum bit (“qubit”) that fuses two promising physical implementations for the storage and manipulation of quantum information – the electromagnetic modes of superconducting circuits, and the spins of electrons trapped in semiconductor quantum dots – and has the potential to inherit beneficial aspects of both. This new qubit consists of the spin of an individual superconducting quasiparticle trapped in a Josephson junction made from a semiconductor nanowire. Due to spin-orbit coupling in the nanowire, the supercurrent flowing through the nanowire depends on the quasiparticle spin state. This thesis shows how to harness this spin-dependent supercurrent to achieve both spin detection and coherent spin manipulation. This thesis also represents a significant advancement to our understanding and control of Andreev levels and thus of superconductivity. Andreev levels, microscopic fermionic modes that exist in all Josephson junctions, are the microscopic origin of the famous Josephson effect, and are also the parent states of Majorana modes in the nanowire junctions investigated in this thesis. The results in this thesis are therefore crucial for the development of Majorana-based topological information processing.




Introduction to Superconductivity


Book Description

Accessible to graduate students and experimental physicists, this volume emphasizes physical arguments and minimizes theoretical formalism. Topics include the Bardeen-Cooper-Schrieffer and Ginzburg-Landau theories, magnetic properties of classic type II superconductors, the Josephson effect, fluctuation effects in classic superconductors, high-temperature superconductors, and nonequilibrium superconductivity. 109 figures. 1996 edition.




Introduction to Unconventional Superconductivity


Book Description

Unconventional superconductivity (or superconductivity with a nontrivial Cooper pairing) is believed to exist in many heavy-fermion materials as well as in high temperature superconductors, and is a subject of great theoretical and experimental interest. The remarkable progress achieved in this field has not been reflected in published monographs and textbooks, and there is a gap between current research and the standard education of solid state physicists in the theory of superconductivity. This book is intended to meet this information need and includes the authors' original results.




The Vortex State


Book Description

One of the most spectacular consequences of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. The reader will find the essential introductory chapters and the most recent theoretical and experimental progress in our understanding of the vortex state in both superconductors and superfluids, from lectures given by leading experts in the field, both experimentalists and theoreticians, who gathered in Cargèse for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder, and pinning are thoroughly discussed.




The Physics of Superconductors


Book Description

The original Russian edition is based on a lecture course given by the author and provides a modern treatment of the physics of superconductors with special attention paid to the physical interpretation of the phenomena. This revised English translation has been enlarged by the inclusion of such new developments as High Temperature Superconductivity, and, as such, is the most up-to-date textbook on the subject available. The editor, Paul Müller, is himself a winner of the Walter Schottky Award for Solid State Research.




Fundamentals and Frontiers of the Josephson Effect


Book Description

This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.







Strong Correlation and Superconductivity


Book Description

This volume contains the proceedings of the ffiM Japan International Sympo sium on Strong Correlation and Superconductivity, which was held in Keidan ren Guest House at the foot of Mt. Fuji, May 21-25, 1989. The purpose of the Symposium was to provide an opportunity for discus sions on the problem of strong correlation of electrons in the context of high-Tc superconductivity. Sixty-eight scientists were invited from seven countries and forty-three papers were presented in the Symposium. Soon after the discovery ofhigh-Tc superconducting oxides, Professor P. W. Anderson proposed that the essence of high-Tc superconductivity lies in the strong correlation among the electrons in these materials. This proposal has stimulated a wide range of theoretical investigations on this profound and dif ficult problem, which are expected to lead eventually to new concepts describ ing strong electron correlation. In the Symposium, Anderson himself started lively discussions by his talk entitled "Myth and Reality in High-Tc Supercon ductivity", which was followed by various reports on theoretical studies and experimental results. Concise and thoughtful summaries of experiment and theory were given by Professors H. R. Ott and P. A. Lee, respectively. It is our hope that this volume reflects the present status of the research activity on this outstanding problem from the viewpoint of the basic physics and that it will further stimulate the effort to understand these fascinating systems, the high-Tc oxides.




Recent Books