Angular Momentum Theory Applied to Interactions in Solids


Book Description

From December 1985 through March 1986 the text of this book formed the basis of an in-hours course taught by the author at Harry Diamond Laborato ries. Considerable assistance in revising and organizing the first draft was given by John Bruno. The original draft of these notes was based on a collection of lectures delivered at the Universidade Federal de Pernambuco, Recife, Brazil, between 2 November 1981 and 2 December 1981. The visit to Recife was a response to an invi tation of Professor Gilberto F. de Sa of the Physics Department. In the preparation of these notes I made many requests of my coworkers for earlier resul ts and recollections of our early work. Among those consul ted were Donald Wortman, Nick Karayianis, and Richard Leavitt. Further, a number of .suggestions from my Brazilian colleagues helped make the lectures more clear. Particular among these were Professor Oscar Malta and Professor Alfredo A. da Gama both of whom I wish to thank for their help. Encouragement and assistance with funding for much of this work came from Leon Esterowitz of the Naval Research Laboratory and Rudolph Buser and Albert Pinto of the center for Night Vision and Electro-Optics.




Handbook of Applied Solid State Spectroscopy


Book Description

Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. This handbook brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies. It provides an overview of sixteen spectroscopic technique and self-contained chapters present up-to-date scientific and technical information and references with minimal overlap and redundancy.




Theoretical Foundations of Molecular Magnetism


Book Description

Magnetochemistry is a highly interdisciplinary field that attracts the interest of chemists, physicists and material scientists. Although the general strategy of theoretical molecular magnetism has been in place for decades, its performance for extended systems of interacting magnetic units can be very complicated. Professor Boca's book treats the "mosaic" of the theoretical approaches currently used in the field. This book presents a review of the theoretical concepts of molecular magnetism. The first chapter of the book recapitulates the necessary mathematical background. An overview of macroscopic magnetic properties is then presented. Formulation of magnetic parameters and methods of their calculation are given, followed by a brief summary of magnetic behaviour. The core of the book deals with the temperature dependence of magnetic susceptibility for mononuclear complexes, dimers, and exchange-coupled clusters.This book will be particularly useful for those scientists and students working in the field of molecular magnetism who need to refer to a complete and systematic treatment of the mathematics of magneto-chemical theory.




Optical Interactions In Solids (2nd Edition)


Book Description

Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>










Quantum Theory of the Solid State


Book Description

This new edition presents a comprehensive, up-to-date survey of the concepts and methods in contemporary condensed matter physics, emphasizing topics that can be treated by quantum mechanical methods. The book features tutorial discussions of a number of current research topics.Also included are updated treatments of topics that have developed significantly within the past several years, such as superconductivity, magnetic impurities in metals, methods for electronic structure calculations, magnetic ordering in insulators and metals, and linear response theory. Advanced level graduate students and practicing condensed matter physicists will use the second edition of Quantum Theory of the Solid State as an important source of information.n Renormalization group theoryn Integer and fractional quantum Hall effectn Transport in mesoscopic systems, andn Numerical methods in many-body theory




Fluid-Solid Interaction Dynamics


Book Description

Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods and Applications gives a comprehensive accounting of fluid-solid interaction dynamics, including theory, numerical methods and their solutions for various FSI problems in engineering. The title provides the fundamental theories, methodologies and results developed in the application of FSI dynamics. Four numerical approaches that can be used with almost all integrated FSI systems in engineering are presented. Methods are linked with examples to illustrate results. In addition, numerical results are compared with available experiments or numerical data in order to demonstrate the accuracy of the approaches and their value to engineering applications. The title gives readers the state-of-the-art in theory, variational principles, numerical modeling and applications for fluid-solid interaction dynamics. Readers will be able to independently formulate models to solve their engineering FSI problems using information from this book. - Presents the state-of-the-art in fluid-solid interaction dynamics, providing theory, method and results - Takes an integrated approach to formulate, model and simulate FSI problems in engineering - Illustrates results with concrete examples - Gives four numerical approaches and related theories that are suitable for almost all integrated FSI systems - Provides the necessary information for bench scientists to independently formulate, model, and solve physical FSI problems in engineering







Solid State Theory, Volume 2


Book Description

The present volume 2 covers advanced topics in theoretical solid state physics and thus ties in directly with the fundamentals. Solids in external fields or more generally in non-equilibrium and deviations from the ideal 3-dimensional crystal structure (surfaces, impurities, low-dimensional structures, quantum dots, etc.) are treated. The consideration of collective phenomena such as superconductivity and magnetism complete the presentation. The reader is assumed to have the contents of Volume 1 (electrons and phonons in ideal crystals, Bloch theorem, population number representation or 2nd quantization, electron-electron and electron-phonon interaction) as well as the basic knowledge of general theoretical physics (mechanics, electrodynamics, quantum mechanics, and statistical physics) usually available after a bachelor's degree in physics. Volume 2 is thus ideally suited for students in the master's program in physics who wish to specialize in (experimental or theoretical) solid-state physics. Addressing current topics (e.g., Kondo effect, fractional quantum Hall effect, 2-dimensional crystals such as graphene, giant magnetoresistance effect, and others) provides an optimal transition to modern research.The new edition has been completely revised, expanded with numerous exercises and existing redesigned, with the associated solutions now included in the book.