Anisotropic Elasticity


Book Description

Elasticity is a property of materials which returns them to their original shape after forces applied to change the shape have been removed. This advanced text explores the problems of composite or anisotropic materials and their elasticity.




Anisotropic Elasticity


Book Description

This book presents a modern and unconventional introduction to anisotropy. The first part presents a general description of Anisotropic Elasticity theories while the second part focuses on the polar formalism: the theoretical bases and results are completely developed along with applications to design problems of laminated anisotropic structures. The book is based on lectures on anisotropy which have been held at Ecole Polytechnique in Paris.




Anisotropic Elasticity


Book Description

Anisotropic Elasticity offers for the first time a comprehensive survey of the analysis of anisotropic materials that can have up to twenty-one elastic constants. Focusing on the mathematically elegant and technically powerful Stroh formalism as a means to understanding the subject, the author tackles a broad range of key topics, including antiplane deformations, Green's functions, stress singularities in composite materials, elliptic inclusions, cracks, thermo-elasticity, and piezoelectric materials, among many others. Well written, theoretically rigorous, and practically oriented, the book will be welcomed by students and researchers alike.




Modern Theory of Anisotropic Elasticity and Applications


Book Description

A selection of 26 original papers, some of them substantially revised after the workshop, discuss anisotropic elasticity and its applications in solid mechanics and applied mathematics. Considering elastostatics, elastodynamics, and constitutive relations, they discuss such topics as Green's functio




Anisotropic Elasticity with Matlab


Book Description

This book provides the theory of anisotropic elasticity with the computer program for analytical solutions as well as boundary element methods. It covers the elastic analysis of two-dimensional, plate bending, coupled stretching-bending, and three-dimensional deformations, and is extended to the piezoelectric, piezomagnetic, magnetic-electro-elastic, viscoelastic materials, and the ones under thermal environment. The analytical solutions include the solutions for infinite space, half-space, bi-materials, wedges, interface corners, holes, cracks, inclusions, and contact problems. The boundary element solutions include BEMs for two-dimensional anisotropic elastic, piezoelectric, magnetic-electro-elastic, viscoelastic analyses, and their associated dynamic analyses, as well as coupled stretching-bending analysis, contact analysis, and three-dimensional analysis. This book also provides source codes and examples for all the presenting analytical solutions and boundary element methods. The program is named as AEPH (Anisotropic Elastic Plates – Hwu), which contains 204 MATLAB functions.




Anisotropic Elastic Plates


Book Description

As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only inplane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element analysis.




Analytical Methods in Anisotropic Elasticity


Book Description

* Comprehensive textbook/reference applies mathematical methods and modern symbolic computational tools to anisotropic elasticity * Presents unified approach to a vast diversity of structural models * State-of-the-art solutions are provided for a wide range of composite material configurations, including: 3-D anisotropic bodies, 2-D anisotropic plates, laminated and thin-walled structures




Elasticity of Transversely Isotropic Materials


Book Description

This book aims to provide a comprehensive introduction to the theory and applications of the mechanics of transversely isotropic elastic materials. There are many reasons why it should be written. First, the theory of transversely isotropic elastic materials is an important branch of applied mathematics and engineering science; but because of the difficulties caused by anisotropy, the mathematical treatments and descriptions of individual problems have been scattered throughout the technical literature. This often hinders further development and applications. Hence, a text that can present the theory and solution methodology uniformly is necessary. Secondly, with the rapid development of modern technologies, the theory of transversely isotropic elasticity has become increasingly important. In addition to the fields with which the theory has traditionally been associated, such as civil engineering and materials engineering, many emerging technologies have demanded the development of transversely isotropic elasticity. Some immediate examples are thin film technology, piezoelectric technology, functionally gradient materials technology and those involving transversely isotropic and layered microstructures, such as multi-layer systems and tribology mechanics of magnetic recording devices. Thus a unified mathematical treatment and presentation of solution methods for a wide range of mechanics models are of primary importance to both technological and economic progress.




Anisotropic Elastic Plates


Book Description

As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only inplane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element analysis.




Elasticity


Book Description

Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of