An Introduction to Noncommutative Noetherian Rings


Book Description

This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.




Integral Closure of Ideals, Rings, and Modules


Book Description

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.










Ring Theory, 83


Book Description

This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**"As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of nonexperts, mathematicians whose speciality is not ring theory, will find Ring Theory ideally suited to their needs....They, as well as students, will be well served by the many examples of rings and the glossary of major results."**--NOTICES OF THE AMS




Ring Theory V1


Book Description

Ring Theory V1




Spectral Theory of Random Matrices


Book Description

Spectral Theory of Random Matrices







Non-Noetherian Commutative Ring Theory


Book Description

Commutative Ring Theory emerged as a distinct field of research in math ematics only at the beginning of the twentieth century. It is rooted in nine teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area.