Anomalies in Quantum Field Theory


Book Description

This text presents the different aspects of the study of anomalies. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. It includes derivations and calculations







Path Integrals and Quantum Anomalies


Book Description

The Feynman path integrals are becoming increasingly important in the applications of quantum mechanics and field theory. The path integral formulation of quantum anomalies, i.e. the quantum breaking of certain symmetries, can now cover all the known quantum anomalies in a coherent manner. In this book the authors provide an introduction to the path integral method in quantum field theory and its applications to the analyses of quantum anomalies. No previous knowledge of fieldtheory beyond the advanced undergraduate quantum mechanics is assumed. The book provides the first coherent introductory treatment of the path integral formulation of chiral and Weyl anomalies, with applications to gauge theory in two and four dimensions, conformal field theory and string theory. Explicitand elementary path integral calculations of most of the quantum anomalies covered are given. The conceptual basis of the path integral bosonization in two-dimensional theory, which may have applications to condensed matter theory, for example, is clarified. The book also covers the recent interesting developments in the treatment of fermions and chiral anomalies in lattice gauge theory.




Path Integrals and Anomalies in Curved Space


Book Description

This book introduces path integrals, a powerful method for describing quantum phenomena, and then uses them to compute anomalies in quantum field theories. An advanced text for researchers and graduate students of quantum field theory and string theory, it also provides a stand-alone introduction to path integrals in quantum mechanics.




Quantum Field Theory and the Standard Model


Book Description

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.




Quantum Field Theory in a Nutshell


Book Description

A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University




Current Algebra and Anomalies


Book Description

Current algebra remains our most successful analysis of fundamental particle interactions. This collection of surveys on current algebra and anomalies is a successor volume to Lectures on Current Algebra and Its Applications (Princeton Series in Physics, 1972). Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Quantum Field Theory


Book Description

The only graduate-level textbook on quantum field theory that fully integrates perspectives from high-energy, condensed-matter, and statistical physics Quantum field theory was originally developed to describe quantum electrodynamics and other fundamental problems in high-energy physics, but today has become an invaluable conceptual and mathematical framework for addressing problems across physics, including in condensed-matter and statistical physics. With this expansion of applications has come a new and deeper understanding of quantum field theory—yet this perspective is still rarely reflected in teaching and textbooks on the subject. Developed from a year-long graduate course Eduardo Fradkin has taught for years to students of high-energy, condensed-matter, and statistical physics, this comprehensive textbook provides a fully "multicultural" approach to quantum field theory, covering the full breadth of its applications in one volume. Brings together perspectives from high-energy, condensed-matter, and statistical physics in both the main text and exercises Takes students from basic techniques to the frontiers of physics Pays special attention to the relation between measurements and propagators and the computation of cross sections and response functions Focuses on renormalization and the renormalization group, with an emphasis on fixed points, scale invariance, and their role in quantum field theory and phase transitions Other topics include non-perturbative phenomena, anomalies, and conformal invariance Features numerous examples and extensive problem sets Also serves as an invaluable resource for researchers




Advanced Concepts in Quantum Field Theory


Book Description

This book comprises the second half of a quantum field theory (QFT) course for graduate students. It gives a concise introduction to advanced concepts that are important for research in elementary particle theory. Topics include the path integral, loop expansion, Feynman rules, various regularization methods, renormalization, running couplings and the renormalization group, fixed points and asymptotic freedom, effective action, Coleman-Weinberg effective potential, fermions, the axial anomaly, QED, gauge fixing, nonabelian gauge theories, unitarity, optical theorem, Slavnov-Taylor identities, beta function of Yang-Mills theory, a heuristic derivation of asymptotic freedom, instantons in SU(N) gauge theory, theta vacua and the strong CP problem. Exercises are included and are intended for advanced graduate students or postdocs seeking to deepen their understanding of QFT.




Quantum Topology And Global Anomalies


Book Description

Anomalies are ubiquitous features in quantum field theories. They can ruin the consistency of such theories and put significant restrictions on their viability, especially in dimensions higher than four. Global gauge and gravitational anomalies are to date, one of the scant powerful and probing tools available to physicists in the pursuit of uniqueness.This monograph is one of the very few that specializes in the study of global anomalies in quantum field theories. A discussion of various issues associated to three dimensional physics — the Chern-Simons-Witten theories — widen the scope of this book. Topics discussed here comprises: the ongoing quest for three-manifolds invariant, the role of the mapping class groups in (a) the detection and cancellation of global anomalies, (b) formulating three-manifolds invariant; the geometric quantization of Chern-Simons-Witten theories; deformation quantization; study of chiral and gravitational anomalies; anomalies and the Atiyah-Patodi-Singer Index theorem; exotic spheres; global gravitational anomalies in some six and ten dimensional supergravity and superstring theories, with an additional case study of Witten SU(2) Global Gauge Anomalies.In addition, five chapters lay out the mathematical basis for a thorough use of the topics above. One chapter focuses on the relationship between Teichmüller spaces, moduli spaces and mapping class groups. Another chapter is devoted to mapping class groups and arithmetic groups. Gauge theories on Riemann surfaces are studies in well over two chapters, the first one centered on the theory of bundles and the second on connections.Many readers will find this a useful book, especially theoretical physicists and mathematicians. The material presented here will be of interest to both the experts who will find complete, detailed and precise descriptions of important topics of current interest in mathematical physics, and to students and newcomers to the field, who will appreciate the vast amount of information provided here, especially on global anomalies.