Antibiotics and Antimicrobial Resistance Genes in the Environment


Book Description

Antibiotics and Antimicrobial Resistance Genes (AMR) in the Environment summarizes and updates information on antibiotic producing organisms and their resistance and entry routes in soil, air, water and sediment. As antibiotic use continues to rise in healthcare, their fate, bioavailability and biomonitoring, and impacts on environment and public health are becoming increasingly important. The book addresses the impact of antibiotics and AMR to environment and public health and risk assessment. Moreover, it focused on the metagenomics and molecular techniques for the detection of antibiotics and antimicrobial genes. Lastly, it introduces management strategies, such as treatment technologies for managing antibiotics and AMR/ARGs-impacted environment, and bioremediation approaches. - Summarizes and updates information on antibiotics and AMR/ARGs production and its fate and transport in the environment - Includes phytoremediation and bioremediation technologies for environmental management - Provides analysis of risk assessment of antibiotic resistance genes to help understand the environmental and socioeconomic impacts of antibiotics and AMR/ARGs




Antibiotics and Antimicrobial Resistance Genes in the Environment


Book Description

Antibiotics and Antimicrobial Resistance Genes (AMR) in the Environment summarizes and updates information on antibiotic producing organisms and their resistance and entry routes in soil, air, water and sediment. As antibiotic use continues to rise in healthcare, their fate, bioavailability and biomonitoring, and impacts on environment and public health are becoming increasingly important. The book addresses the impact of antibiotics and AMR to environment and public health and risk assessment. Moreover, it focused on the metagenomics and molecular techniques for the detection of antibiotics and antimicrobial genes. Lastly, it introduces management strategies, such as treatment technologies for managing antibiotics and AMR/ARGs-impacted environment, and bioremediation approaches.




Improving Food Safety Through a One Health Approach


Book Description

Globalization of the food supply has created conditions favorable for the emergence, reemergence, and spread of food-borne pathogens-compounding the challenge of anticipating, detecting, and effectively responding to food-borne threats to health. In the United States, food-borne agents affect 1 out of 6 individuals and cause approximately 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths each year. This figure likely represents just the tip of the iceberg, because it fails to account for the broad array of food-borne illnesses or for their wide-ranging repercussions for consumers, government, and the food industry-both domestically and internationally. A One Health approach to food safety may hold the promise of harnessing and integrating the expertise and resources from across the spectrum of multiple health domains including the human and veterinary medical and plant pathology communities with those of the wildlife and aquatic health and ecology communities. The IOM's Forum on Microbial Threats hosted a public workshop on December 13 and 14, 2011 that examined issues critical to the protection of the nation's food supply. The workshop explored existing knowledge and unanswered questions on the nature and extent of food-borne threats to health. Participants discussed the globalization of the U.S. food supply and the burden of illness associated with foodborne threats to health; considered the spectrum of food-borne threats as well as illustrative case studies; reviewed existing research, policies, and practices to prevent and mitigate foodborne threats; and, identified opportunities to reduce future threats to the nation's food supply through the use of a "One Health" approach to food safety. Improving Food Safety Through a One Health Approach: Workshop Summary covers the events of the workshop and explains the recommendations for future related workshops.




Antimicrobial Resistance in the Environment


Book Description

Examines effects of the environmental distribution of antimicrobial resistance genes on human health and the ecosystem Resistance genes are everywhere in nature—in pathogens, commensals, and environmental microorganisms. This contributed work shows how the environment plays a pivotal role in the development of antimicrobial resistance traits in bacteria and the distribution of resistant microbial species, resistant genetic material, and antibiotic compounds. Readers will discover the impact of the distribution in the environment of antimicrobial resistance genes and antibiotics on both the ecosystem and human and animal health. Antimicrobial Resistance in the Environment is divided into four parts: Part I, Sources, including ecological and clinical consequences of antibiotic resistance by environmental microbes Part II, Fate, including strategies to assess and minimize the biological risk of antibiotic resistance in the environment Part III, Antimicrobial Substances and Resistance, including antibiotics in the aquatic environment Part IV, Effects and Risks, including the effect of antimicrobials used for non-human purposes on human health Recognizing the intricate links among overlapping complex systems, this book examines antimicrobial resistance using a comprehensive ecosystem approach. Moreover, the book's multidisciplinary framework applies principles of microbiology, environmental toxicology, and chemistry to assess the human and ecological risks associated with exposure to antibiotics or antibiotic resistance genes that are environmental contaminants. Each chapter has been written by one or more leading researchers in such fields as microbiology, environmental science, ecology, and toxicology. Comprehensive reference lists at the end of all chapters serve as a gateway to the primary research in the field. Presenting and analyzing the latest findings in a field of growing importance to human and environmental health, this text offers readers new insights into the role of the environment in antimicrobial resistance development, the dissemination of antimicrobial resistant genetic elements, and the transport of antibiotic resistance genes and antibiotics.







Pharmaceuticals in the Environment


Book Description

Following the success of the first edition, this pioneering study of pharmaceuticals in the environment has been updated and greatly extended. It includes the status of research on pharmaceuticals in soil, with attention to terrestrial and aquatic environments as well as new substance categories such as tetracylines and chinolones and the latest results concerning contamination of the environment and risk reduction.




Antibiotic Resistance in the Environment


Book Description

This book provides a multidisciplinary review of antibiotic resistance and unravels the complex and interrelated roles of environmental sources, including pharmaceutical industry effluents, hospital and domestic effluents, wildlife and drinking water. Antibiotic resistance is a global public health issue in which the interface between humans, animals and the environment is particularly relevant. The contrasts seen across different environmental compartments and world regions, which are due to climate, social and policy differences, mean that this problem needs to be analyzed from a multi-geographic and multi-cultural angle. Bringing together contributions from researchers on different continents with expertise in antibiotic resistance in a range of different environmental compartments, the book offers a detailed reflection on the paths that make antibiotic resistance a global threat, and the state-of- the-art in antibiotic resistance surveillance and risk assessment in complex environmental matrices.




Antimicrobial Resistance in Environmental Waters


Book Description

This Special Issue on Antimicrobial Resistance in Environmental Waters features 11 articles on the monitoring and surveillance of antimicrobial resistance (AMR) in natural aquatic systems (i.e., reservoirs, rivers), and effluent discharge from water treatment plants to assess the effectiveness of AMR removal and resulting loads in treated waters. Some of the key elements of AMR studies presented in this Special Issue highlight the underlying drivers of AMR contamination in the environment and the evaluation of the hazard imposed on aquatic organisms in receiving environments through ecological risk assessments. As described in this Issue, screening antimicrobial peptide (AMP) libraries for biofilm disruption and antimicrobial candidates are promising avenues for the development of new treatment options to eradicate resistance.




Antimicrobial Resistance in Wastewater Treatment Processes


Book Description

Antimicrobial resistance is arguably the greatest threat to worldwide human health. This book evaluates the roles of human water use, treatment and conservation in the development and spread of antimicrobial resistance. Designed as a companion volume to Antimicrobial Resistance in the Environment (Wiley-Blackwell, 2012), this book is a multi-disciplinary synthesis of topics related to antimicrobial resistance and wastewater treatment processes. Antimicrobial Resistance in Wastewater Treatment Processes assembles detailed discussions written by many of the world's best-known experts in microbiology, civil engineering, chemistry, environmental science, public health and related fields. The book presents a collection of subjects that includes: Current knowledge of the role of the environment in development and spread of antimicrobial resistance Chemical analysis of antibiotics in environmental samples Molecular methods for analysis of antimicrobial resistance genes Advanced wastewater treatment processes and antimicrobial resistance effects Public perception of risk related to health consequences of antimicrobial resistance Public health implications of antimicrobial resistance with focus on wastewater treatment processes Antimicrobial resistance has gained a foothold in the global consciousness as a serious public health threat. There is a much greater appreciation for the role of the environment in the dissemination of antimicrobial resistance and the effects of pollutants that can potentially promote development of resistance in bacteria. Contaminants released from wastewater treatment plants are a concern. In Antimicrobial Resistance in Wastewater Treatment Processes, readers will be guided through examinations of the current science related to this important health issue.




Antibiotic Drug Resistance


Book Description

This book presents a thorough and authoritative overview of the multifaceted field of antibiotic science – offering guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases. Provides readers with knowledge about the broad field of drug resistance Offers guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases Links strategies to analyze microbes to the development of new drugs, socioeconomic impacts to therapeutic strategies, and public policies to antibiotic-resistance-prevention strategies