Application of Big Data in Petroleum Streams


Book Description

The book aims to provide comprehensive knowledge and information pertaining to application or implementation of big data in the petroleum industry and its operations (such as exploration, production, refining and finance). The book covers intricate aspects of big data such as 6Vs, benefits, applications, implementation, research work and real-world implementation pertaining to each petroleum-associated operation in a concise manner that aids the reader to apprehend the overview of big data’s role in the industry. The book resonates with readers who wish to understand the intricate details of working with big data (along with data science, machine learning and artificial intelligence) in general and how it affects and impacts an entire industry. As the book builds various concepts of big data from scratch to industry level, readers who wish to gain big data-associated knowledge of industry level in simple language from the very fundamentals would find this a wonderful read.




Machine Learning and Data Science in the Oil and Gas Industry


Book Description

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)




Data Analytics in Reservoir Engineering


Book Description

Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.




Exploring the Boundaries of Big Data


Book Description

In the investigation Exploring the Boundaries of Big Data The Netherlands Scientific Council for Government Policy (WRR) offers building blocks for developing a regulatory approach to Big Data.




Intelligent Digital Oil and Gas Fields


Book Description

Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. - Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations - Includes techniques on change management and collaboration - Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today - Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions







Data Intensive Computing Applications for Big Data


Book Description

The book ‘Data Intensive Computing Applications for Big Data’ discusses the technical concepts of big data, data intensive computing through machine learning, soft computing and parallel computing paradigms. It brings together researchers to report their latest results or progress in the development of the above mentioned areas. Since there are few books on this specific subject, the editors aim to provide a common platform for researchers working in this area to exhibit their novel findings. The book is intended as a reference work for advanced undergraduates and graduate students, as well as multidisciplinary, interdisciplinary and transdisciplinary research workers and scientists on the subjects of big data and cloud/parallel and distributed computing, and explains didactically many of the core concepts of these approaches for practical applications. It is organized into 24 chapters providing a comprehensive overview of big data analysis using parallel computing and addresses the complete data science workflow in the cloud, as well as dealing with privacy issues and the challenges faced in a data-intensive cloud computing environment. The book explores both fundamental and high-level concepts, and will serve as a manual for those in the industry, while also helping beginners to understand the basic and advanced aspects of big data and cloud computing.




Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration


Book Description

The three-volume set CCIS 761, CCIS 762, and CCIS 763 constitutes the thoroughly refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2017, and of the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2017, held in Nanjing, China, in September 2017. The 208 revised full papers presented were carefully reviewed and selected from over 625 submissions. The papers of this volume are organized in topical sections on: Biomedical Signal Processing; Computational Methods in Organism Modeling; Medical Apparatus and Clinical Applications; Bionics Control Methods, Algorithms and Apparatus; Modeling and Simulation of Life Systems; Data Driven Analysis; Image and Video Processing; Advanced Fuzzy and Neural Network Theory and Algorithms; Advanced Evolutionary Methods and Applications; Advanced Machine Learning Methods and Applications; Intelligent Modeling, Monitoring, and Control of Complex Nonlinear Systems; Advanced Methods for Networked Systems; Control and Analysis of Transportation Systems; Advanced Sliding Mode Control and Applications; Advanced Analysis of New Materials and Devices; Computational Intelligence in Utilization of Clean and Renewable Energy Resources; Intelligent Methods for Energy Saving and Pollution Reduction; Intelligent Methods in Developing Electric Vehicles, Engines and Equipment; Intelligent Computing and Control in Power Systems; Modeling, Simulation and Control in Smart Grid and Microgrid; Optimization Methods; Computational Methods for Sustainable Environment.




Application of Analytical Techniques to Petroleum Systems


Book Description

Cutting-edge techniques have always been utilized in petroleum exploration and production to reduce costs and improve efficiencies. The demand for petroleum in the form of oil and gas is expected to increase for electricity production, transport and chemical production, largely driven by an increase in energy consumption in the developing world. Innovations in analytical methods will continue to play a key role in the industry moving forwards as society shifts towards lower carbon energy systems and more advantaged oil and gas resources are targeted. This volume brings together new analytical approaches and describes how they can be applied to the study of petroleum systems. The papers within this volume cover a wide range of topics and case studies, in the fields of fluid and isotope geochemistry, organic geochemistry, imaging and sediment provenance. The work illustrates how the current, state-of-the-art technology can be effectively utilised to address ongoing challenges in petroleum geoscience.




High-Performance Modelling and Simulation for Big Data Applications


Book Description

This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.