Application of Solution Protein Chemistry to Biotechnology


Book Description

Reflecting the versatility of the author's science and the depth of his experience, Application of Solution Protein Chemistry to Biotechnology explores key contributions that protein scientists can make in the development of products that are both important and commercially viable, and provides them with tools and information required for successfu







Protein Chromatography


Book Description

This third edition expands on the previous editions with updated and new chapters on protein chromatography. Chapters detail protein stability and storage, avoiding proteolysis, protein quantitation methods, generation and purification of recombinant proteins, recombinant antibody production, and the tagging of proteins. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Chromatography: Methods and Protocols, Third Edition aims to provide commonly used methods and new approaches to help both new researchers and experts expand their knowledge.




Chemical Modification of Biological Polymers


Book Description

Examining the chemical modification of biological polymers and the emerging applications of this technology, Chemical Modification of Biological Polymers reflects the change in emphasis in this subsection of biotechnology from the study of protein structure and function toward applications in therapeutics and diagnostics. HighlightsThe basic organi




Proteolysis in the Interstitial Space


Book Description

Most clinical laboratory tests utilize interstitial and extravascular such as blood, urine, cerebral spinal fluid (CSF), and saliva. For example, CSF is monitored in the context of cancer for both diagnostic and therapeutic reasons. And yet, our understanding of the makeup of interstitial fluids, their relationships to disease, as well as their commercial importance in therapeutics and diagnostics remains rudimentary. Although sometimes perceived as static, interstitial and extravascular fluids are surprisingly dynamic. More than half of serum albumin is in the extravascular space. These fluids move rapidly between the intravascular and extravascular spaces - one entire plasma volume is exchanged very nine hours. In the first half of the book, the authors cover fundamental concepts of interstitial fluids, including their composition and function. They then further review the mechanisms by which interstitial fluids are regulated, characterizing the importance of hyaluronan – a major constituent of interstitial spaces and an a component of synovial fluid; and, outlining the regulation of proteolysis in the interstitial space. In the second half of the book, the authors focus on the coagulation system. This system has been studied extensively in the context of vascular spaces. But many of its components exist in the interstitial spaces. Chapters are devoted to the fibrinolytic system, kallikrein, matrix metalloproteinases, coagulation factors, and protease inhibitors – all are interstitial. By covering a unique array of topics with broad application to biomedical scientists, this book expands our understanding of the importance of interstitial spaces and the fluids that move through and reside in this extravascular environment.




Adhesives in Biomedical Applications


Book Description

ADHESIVES IN BIOMEDICAL APPLICATIONS Uniquely provides up-to-date and comprehensive information on adhesives in biomedical applications in an easily accessible form. Adhesives are gaining popularity in many and varied biomedical applications as they are being used as a replacement for sutures and staples, which have the disadvantages such as scarring, infection, keloid formation, poor skin healing, or hernia in the case of abdominal sutures. On the other hand, adhesives dramatically reduce healthcare costs, significantly reduce time spent in surgery, curb the risks of bleeding, and are generally easy to use. Adhesives also find their use in diagnostic imaging, various biomedical devices, dental adhesives, dermal adhesives, etc. Adhesives in Biomedical Applications contains eleven chapters and is divided into two parts: Part 1: General Topics; and Part 2: Specific Adhesives, Characteristics, and Applications. Topics covered include: historical developments of various adhesives for biomedical applications; global industry development and analysis of adhesives for biomedical applications; biomedical adhesives; bioadhesion: fundamentals and mechanisms; fibrin glue; herbal bioactives-based mucoadhesive drug delivery systems; adhesive hydrogels; adhesives in dermal patches; medical adhesives from extracted mussel adhesive proteins; dental adhesives; and the role of adhesive-based systems for diagnostic imaging and theranostic applications. Audience The book will be used by adhesionists, adhesive technologists, polymer scientists, materials scientists, as well as those involved with biomedical devices and bioimplants such as medical doctors, surgeons, cosmetologists, as well as engineers in the pharmaceutical industry.




Joining and Assembly of Medical Materials and Devices


Book Description

As medical devices become more intricate, with an increasing number of components made from a wide range of materials, it is important that they meet stringent requirements to ensure that they are safe to be implanted and will not be rejected by the human body. Joining and assembly of medical materials and devices provides a comprehensive overview of joining techniques for a range of medical materials and applications.Part one provides an introduction to medical devices and joining methods with further specific chapters on microwelding methods in medical components and the effects of sterilization on medical materials and welded devices. Part two focuses on medical metals and includes chapters on the joining of shape memory alloys, platinum (Pt) alloys and stainless steel wires for implantable medical devices and evaluating the corrosion performance of metal medical device welds. Part three moves on to highlight the joining and assembly of medical plastics and discusses techniques including ultrasonic welding, transmission laser welding and radio frequency (RF)/dielectric welding. Finally, part four discusses the joining and assembly of biomaterial and tissue implants including metal-ceramic joining techniques for orthopaedic applications and tissue adhesives and sealants for surgical applications.Joining and assembly of medical materials and devices is a technical guide for engineers and researchers within the medical industry, professionals requiring an understanding of joining and assembly techniques in a medical setting, and academics interested in this field. - Introduces joining methods in medical applications including microwelding and considers the effects of sterilization on the resulting joints and devices - Considers the joining, assembly and corrosion performance of medical metals including shape memory alloys, platinum alloys and stainless steel wires - Considers the joining and assembly of medical plastics including multiple welding methods, bonding strategies and adhesives




Advances in Protein Chemistry and Structural Biology


Book Description

Structural genomics is the systematic determination of 3-D structures of proteins representative of the range of protein structure and function found in nature. The goal is to build a body of structural information that will predict the structure and potential function for almost any protein from knowledge of its coding sequence. This is essential information for understanding the functioning of the human proteome, the ensemble of tens of thousands of proteins specified by the human genome. While most structural biologists pursue structures of individual proteins or protein groups, specialists in structural genomics pursue structures of proteins on a genome wide scale. This implies large-scale cloning, expression and purification. One main advantage of this approach is economy of scale. - Examines the three dimensional structure of all proteins of a given organism, by experimental methods such as X-ray crystallography and NMR spectroscopy - Looks at structural genomics as a foundation of drug discovery as discovering new medicines is becoming more challenging and the pharmaceutical industry is looking to new technologies to help in this mission




Peptide Applications in Biomedicine, Biotechnology and Bioengineering


Book Description

Peptide Applications in Biomedicine, Biotechnology and Bioengineering summarizes the current knowledge on peptide applications in biomedicine, biotechnology and bioengineering. After a general introduction to peptides, the book addresses the many applications of peptides in biomedicine and medical technology. Next, the text focuses on peptide applications in biotechnology and bioengineering and reviews of peptide applications in nanotechnology. This book is a valuable resource for biomaterial scientists, polymer scientists, bioengineers, mechanical engineers, synthetic chemists, medical doctors and biologists. - Presents a self-contained work for the field of biomedical peptides - Summarizes the current knowledge on peptides in biomedicine, biotechnology and bioengineering - Covers current and potential applications of biomedical peptides




Encyclopedia of Cell Biology


Book Description

The Encyclopedia of Cell Biology, Four Volume Set offers a broad overview of cell biology, offering reputable, foundational content for researchers and students across the biological and medical sciences. This important work includes 285 articles from domain experts covering every aspect of cell biology, with fully annotated figures, abundant illustrations, videos, and references for further reading. Each entry is built with a layered approach to the content, providing basic information for those new to the area and more detailed material for the more experienced researcher. With authored contributions by experts in the field, the Encyclopedia of Cell Biology provides a fully cross-referenced, one-stop resource for students, researchers, and teaching faculty across the biological and medical sciences. Fully annotated color images and videos for full comprehension of concepts, with layered content for readers from different levels of experience Includes information on cytokinesis, cell biology, cell mechanics, cytoskeleton dynamics, stem cells, prokaryotic cell biology, RNA biology, aging, cell growth, cell Injury, and more In-depth linking to Academic Press/Elsevier content and additional links to outside websites and resources for further reading A one-stop resource for students, researchers, and teaching faculty across the biological and medical sciences