Applications of Abstract Algebra with MAPLE


Book Description

The mathematical concepts of abstract algebra may indeed be considered abstract, but its utility is quite concrete and continues to grow in importance. Unfortunately, the practical application of abstract algebra typically involves extensive and cumbersome calculations-often frustrating even the most dedicated attempts to appreciate and employ its intricacies. Now, however, sophisticated mathematical software packages help obviate the need for heavy number-crunching and make fields dependent on the algebra more interesting-and more accessible. Applications of Abstract Algebra with Maple opens the door to cryptography, coding, Polya counting theory, and the many other areas dependent on abstract algebra. The authors have carefully integrated Maple V throughout the text, enabling readers to see realistic examples of the topics discussed without struggling with the computations. But the book stands well on its own if the reader does not have access to the software. The text includes a first-chapter review of the mathematics required-groups, rings, and finite fields-and a Maple tutorial in the appendix along with detailed treatments of coding, cryptography, and Polya theory applications. Applications of Abstract Algebra with Maple packs a double punch for those interested in beginning-or advancing-careers related to the applications of abstract algebra. It not only provides an in-depth introduction to the fascinating, real-world problems to which the algebra applies, it offers readers the opportunity to gain experience in using one of the leading and most respected mathematical software packages available.




Applications of Abstract Algebra with MAPLE


Book Description

The mathematical concepts of abstract algebra may indeed be considered abstract, but its utility is quite concrete and continues to grow in importance. Unfortunately, the practical application of abstract algebra typically involves extensive and cumbersome calculations-often frustrating even the most dedicated attempts to appreciate and employ its intricacies. Now, however, sophisticated mathematical software packages help obviate the need for heavy number-crunching and make fields dependent on the algebra more interesting-and more accessible. Applications of Abstract Algebra with Maple opens the door to cryptography, coding, Polya counting theory, and the many other areas dependent on abstract algebra. The authors have carefully integrated Maple V throughout the text, enabling readers to see realistic examples of the topics discussed without struggling with the computations. But the book stands well on its own if the reader does not have access to the software. The text includes a first-chapter review of the mathematics required-groups, rings, and finite fields-and a Maple tutorial in the appendix along with detailed treatments of coding, cryptography, and Polya theory applications. Applications of Abstract Algebra with Maple packs a double punch for those interested in beginning-or advancing-careers related to the applications of abstract algebra. It not only provides an in-depth introduction to the fascinating, real-world problems to which the algebra applies, it offers readers the opportunity to gain experience in using one of the leading and most respected mathematical software packages available.




Applications of Abstract Algebra with Maple and MATLAB, Second Edition


Book Description

Eliminating the need for heavy number-crunching, sophisticated mathematical software packages open the door to areas like cryptography, coding theory, and combinatorics that are dependent on abstract algebra. Applications of Abstract Algebra with Maple and MATLAB®, Second Edition explores these topics and shows how to apply the software programs to abstract algebra and its related fields. Carefully integrating MapleTM and MATLAB®, this book provides an in-depth introduction to real-world abstract algebraic problems. The first chapter offers a concise and comprehensive review of prerequisite advanced mathematics. The next several chapters examine block designs, coding theory, and cryptography while the final chapters cover counting techniques, including Pólya's and Burnside's theorems. Other topics discussed include the Rivest, Shamir, and Adleman (RSA) cryptosystem, digital signatures, primes for security, and elliptic curve cryptosystems. New to the Second Edition Three new chapters on Vigenère ciphers, the Advanced Encryption Standard (AES), and graph theory as well as new MATLAB and Maple sections Expanded exercises and additional research exercises Maple and MATLAB files and functions available for download online and from a CD-ROM With the incorporation of MATLAB, this second edition further illuminates the topics discussed by eliminating extensive computations of abstract algebraic techniques. The clear organization of the book as well as the inclusion of two of the most respected mathematical software packages available make the book a useful tool for students, mathematicians, and computer scientists.




Applied Abstract Algebra with MapleTM and MATLAB


Book Description

Applied Abstract Algebra with MapleTM and MATLAB provides an in-depth introduction to real-world abstract algebraic problems. This popular textbook covers a variety of topics including block designs, coding theory, cryptography, and counting techniques, including Polya's and Burnside's theorems. The book also includes a concise review of all prereq




Abstract Algebra with Applications


Book Description

This text offers a friendly and concise introduction to abstract algebra, emphasizing its uses in the modern world.




Abstract Algebra


Book Description

In one exceptional volume, Abstract Algebra covers subject matter typically taught over the course of two or three years and offers a self-contained presentation, detailed definitions, and excellent chapter-matched exercises to smooth the trajectory of learning algebra from zero to one. Field-tested through advance use in the ERASMUS educational project in Europe, this ambitious, comprehensive book includes an original treatment of representation of finite groups that avoids the use of semisimple ring theory and explains sets, maps, posets, lattices, and other essentials of the algebraic language; Peano's axioms and cardinality; groupoids, semigroups, monoids, groups; and normal subgroups.




Dynamical Systems with Applications using MAPLE


Book Description

Since the first edition of this book was published in 2001, MapleTM has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural networks and simulation have also been added. The author has emphasized breadth of coverage rather than fine detail, and theorems with proof are kept to a minimum. This text is aimed at senior undergraduates, graduate students, and working scientists in various branches of applied mathematics, the natural sciences, and engineering.




Mathematical Methods for Physics


Book Description

This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and numerical calculations in physics with a variety of plotting features are included in all 16 chapters. The book applies many of mathematical concepts covered in Chapters 1-9 to fundamental physics topics in mechanics, electromagnetics; quantum mechanics and relativity in Chapters 10-16. Companion files are included with MATLAB and Maple worksheets and files, and all of the figures from the text. Features: • Each chapter includes the mathematical development of the concept with numerous examples • MATLAB & Maple examples are integrated in each chapter throughout the book • Applies the mathematical concepts to fundamental physics principles such as relativity, mechanics, electromagnetics, etc. • Introduces basic MATLAB and Maple commands and programming structures • Includes companion files with MATLAB and Maple files and worksheets, and all of the figures from the text




Exploring Discrete Mathematics with Maple


Book Description

This is the first supplement in discrete mathematics to concentrate on the computational aspects of the computer algebra system Maple. Detailed instructions for the use of Maple are included in an introductory chapter and in each subsequent chapter. Each chapter includes discussion of selected Computational and Exploration exercises in the corresponding chapter of Ken Rosen's text Discrete Math and It's Applications, Third Edition. New exercises and projects are included in each chapter to encourage further exploration of discrete mathematics using Maple. All of the Maple code in this supplement is available online via the Waterloo Maple Web site, in addition to new Maple routines that have been created which extend the current capabilities of Maple.




Engineering Mathematics Through Applications


Book Description

This popular, world-wide selling textbook teaches engineering mathematics in a step-by-step fashion and uniquely through engineering examples and exercises which apply the techniques right from their introduction. This contextual use of mathematics is highly motivating, as with every topic and each new page students see the importance and relevance of mathematics in engineering. The examples are taken from mechanics, aerodynamics, electronics, engineering, fluid dynamics and other areas. While being general and accessible for all students, they also highlight how mathematics works in any individual's engineering discipline. The material is often praised for its careful pace, and the author pauses to ask questions to keep students reflecting. Proof of mathematical results is kept to a minimum. Instead the book develops learning by investigating results, observing patterns, visualizing graphs and answering questions using technology. This textbook is ideal for first year undergraduates and those on pre-degree courses in Engineering (all disciplines) and Science. New to this Edition: - Fully revised and improved on the basis of student feedback - New sections - More examples, more exam questions - Vignettes and photos of key mathematicians