Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




The Microbiota in Gastrointestinal Pathophysiology


Book Description

The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics and Dysbiosis is a one-stop reference on the state-of-the-art research on gut microbial ecology in relation to human disease. This important resource starts with an overview of the normal microbiota of the gastrointestinal tract, including the esophagus, stomach, Ileum, and colon. The book then identifies what a healthy vs. unhealthy microbial community looks like, including methods of identification. Also included is insight into which features and contributions the microbiota make that are essential and useful to host physiology, as is information on how to promote appropriate mutualisms and prevent undesirable dysbioses. Through the power of synthesizing what is known by experienced researchers in the field, current gaps are closed, raising understanding of the role of the microbiome and allowing for further research. - Explains how to modify the gut microbiota and how the current strategies used to do this produce their effects - Explores the gut microbiota as a therapeutic target - Provides the synthesis of existing data from both mainstream and non-mainstream sources through experienced researchers in the field - Serves as a 'one-stop' shop for a topic that's currently spread across a number of various journals




Understanding Host-Microbiome Interactions - An Omics Approach


Book Description

This book offers up-to-date information on different microbiomes, their community composition and interactive functions with the host, bringing together information from diverse research reports to provide an overview of the rapid developments in meta-omics technologies. It is a valuable resource for scientists, researchers, postgraduate and graduate students interested in understanding the impact and importance of next generation sequencing technologies on different hosts and their microbiomes.




OMICS


Book Description

With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.




Emerging Tools for Emerging Symbioses—Using Genomics Applications to Studying Endophytes


Book Description

Plants are typically colonized by numerous endophyte species symbiotically without any noticeable disease symptoms. These microbes are abundant, diverse and play critical ecological roles across natural and agricultural ecosystems. Endophytes have attracted the attention of researchers due to their various beneficial effects on plants, especially in agricultural crop species. Genomic tools will enhance our understanding on the growth and nutrition requirements of this host-symbiont relationship. Recent advances in DNA sequencing technologies and bioinformatic pipelines have allowed analyzing the plant microbiome and host-endophyte interaction more effectively with limited bias. Furthermore, various studies have employed and utilized transcriptomic and genomic tools to understand the role of endophytes and their interaction with plant hosts. This electronic book covers various research articles highlighting the important developments on endophytes using transcriptomics, next generation sequencing and genomic tools.




Microbial Management of Plant Stresses


Book Description

Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. - Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience - Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance - Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment




Probiotics in Agroecosystem


Book Description

This book focuses on food security in sustainable agriculture and nutrient management. The study of plant probiotic microbes’ synergism using existing techniques has greatly improved our grasp of the structure and functioning of the plant microbiome. However, the function of plant probiotic microbes and their relation to plants’ health in the context of food security, soil nutrient management, human and plant health are largely unexplored. Compared to human probiotics, diverse types and millions of microbiota inhabit plants, forming multifaceted and complicated ecological societies that stimulate plant growth and health through their combined metabolic activities. From the perspective of sustainable cropping systems, observing plant probiotics can provide insights on how to stimulate and maintain plant productivity, along with host stress tolerance and recycling of soil nutrients. This book combines reviews and original research articles to highlight the latest advances in plant probiotics, their specificity, diversity, function, as well as plant microbiome management to improve plant growth and productivity, nutrient management and human health.




Molecular Aspects of Plant Beneficial Microbes in Agriculture


Book Description

Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.